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1

This book is intended for students who are preparing to take one of the two
Advanced Placement Examinations in Mathematics offered by the College

Entrance Examination Board, and for their teachers. It is based on the May 2009 course
description published by the College Board, and covers the topics listed there for both
Calculus AB and Calculus BC.

Candidates who are planning to take the CLEP Examination on Calculus with
Elementary Functions are referred to the section of this Introduction on that examination
on page 10.

THE COURSES
Calculus AB and BC are both full-year courses in the calculus of functions of a single
variable. Both courses emphasize:

(1) student understanding of concepts and applications of calculus over manipula-
tion and memorization;

(2) developing the student’s ability to express functions, concepts, problems, and
conclusions analytically, graphically, numerically, and verbally, and to understand how
these are related; and

(3) using a graphing calculator as a tool for mathematical investigations and prob-
lem-solving.

Both courses are intended for students who have already studied college-preparato-
ry mathematics: algebra, geometry, trigonometry, analytic geometry, and elementary
functions (linear, polynomial, rational, exponential, logarithmic, trigonometric, inverse
trigonometric, and piecewise). The AB topical course outline that follows can be covered
in a full high-school academic year even if some time is allotted to studying elementary
functions. The BC course assumes that students already have a thorough knowledge of
all the topics noted above. 

TOPICS THAT MAY BE TESTED ON THE 
CALCULUS AB EXAM 
1. Functions and Graphs

Rational, trigonometric, inverse trigonometric, exponential, and logarithmic 
functions.

2. Limits and Continuity
Intuitive definitions; one-sided limits; functions becoming infinite; asymptotes and 

graphs; limit of a quotient; ; estimating limits using tables or graphs.
 
lim

sin
q

q
q→0

Introduction
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2 AP Calculus

Definition of continuity; kinds of discontinuities; theorems about continuous func-
tions; Extreme Value and Intermediate Value Theorems.

3. Differentiation
Definition of derivative as the limit of a difference quotient and as instantaneous
rate of change; derivatives of power, exponential, logarithmic, trig and inverse trig
functions; product, quotient, and chain rules; differentiability and continuity; esti-
mating a derivative numerically and graphically; implicit differentiation; derivative
of the inverse of a function; the Mean Value Theorem; recognizing a given limit as
a derivative. 

4. Applications of Derivatives
Rates of change: slope; critical points; average velocity; tangents and normals;
increasing and decreasing functions; using the first and second derivatives for the
following: local (relative) max or min, inflection points, curve sketching, global
(absolute) max or min and optimization problems; relating a function and its deriv-
atives graphically; motion along a line; local linearization and its use in approxi-
mating a function; related rates; differential equations and slope fields.

5. The Definite Integral
Definite integral as the limit of a Riemann sum; area; definition of definite integral;
properties of the definite integral; Riemann sums using rectangles or sums using
trapezoids; comparing approximating sums; average value of a function;
Fundamental Theorem of Calculus; graphing a function from its derivative; estimat-
ing definite integrals from tables and graphs; accumulated change as integral of rate
of change.

6. Integration
Antiderivatives and basic formulas; antiderivatives by substitution; applications of
antiderivatives; differential equations; motion problems.

7. Applications of Integration to Geometry
Area of a region, including between two curves; volume of a solid of known cross
section, including a solid of revolution.

8. Further Applications of Integration and Riemann Sums
Velocity and distance problems involving motion along a line; other applications
involving the use of integrals of rates as net change or the use of integrals as accu-
mulation functions; average value of a function over an interval.

9. Differential Equations
Basic definitions; geometric interpretations using slope fields; solving first-order
separable differential equations analytically; exponential growth and decay.

TOPICS THAT MAY BE TESTED ON THE 
CALCULUS BC EXAM 
Any of the topics listed above for the Calculus AB exam may be tested on the BC exam.
The following additional topics are restricted to the BC exam.

1. Functions and Graphs
Parametrically defined functions; polar functions; vector functions.

BC ONLY
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2. Limits and Continuity
No additional topics.

3. Differentiation
Derivatives of polar, vector, and parametrically defined functions; indeterminate
forms; L’Hôpital’s rule.

4. Applications of Derivatives
Tangents to parametrically defined curves; slopes of polar curves; analysis of
curves defined parametrically or in polar or vector form.

5. The Definite Integral
Integrals involving parametrically defined functions.

6. Integration
By parts; by partial fractions (involving nonrepeating linear factors only); improper
integrals.

7. Applications of Integration to Geometry
Area of a region bounded by parametrically defined or polar curves; arc length.

8. Further Applications of Integration and Riemann Sums
Velocity and distance problems involving motion along a planar curve; velocity and
acceleration vectors. 

9. Differential Equations
Euler’s method; applications of differential equations, including logistic growth.

10. Sequences and Series
Definition of series as a sequence of partial sums and of its convergence as the limit
of that sequence; harmonic, geometric, and p-series; integral, ratio, and comparison
tests for convergence; alternating series and error bound; power series, including
interval and radius of convergence; Taylor polynomials and graphs; finding a power
series for a function; MacLaurin and Taylor series; Lagrange error bound for Taylor
polynomials; computations using series.

THE EXAMINATIONS
The Calculus AB and BC Examinations and the course descriptions are prepared by com-
mittees of teachers from colleges or universities and from secondary schools. The exami-
nations are intended to determine the extent to which a student has mastered the subject
matter of the course.

Each examination is 3 hours and 15 minutes long, as follows:
Section I has two parts. Part A has 28 multiple-choice questions for which 55 min-

utes are allowed. The use of calculators is not permitted in Part A.
Part B has 17 multiple-choice questions for which 50 minutes are allowed. Some of

the questions in Part B require the use of a graphing calculator.
Section II, the free-response section, has two parts. Each part has three questions,

as follows:

Introduction 3
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4 AP Calculus

Part A requires a graphing calculator for some questions or parts of questions.
After 45 minutes, however, you will no longer be permitted to use a calculator.

Part B also is allotted 45 minutes, but you are not allowed to use a calculator. You
may use some of this time to work further on the questions of Part A, but the calculator
may not be used for any of the work done during the second 45-minute period.

The section that follows on the graphing calculator gives important information on
its use (and misuse!).

THE GRAPHING CALCULATOR: USING YOUR GRAPHING
CALCULATOR ON THE AP EXAM

The Four Calculator Procedures
Each student is expected to bring a graphing calculator to the AP Exam. Different models
of calculators vary in their features and capabilities; however, there are four procedures
you must be able to perform on your calculator:

C1. Produce the graph of a function within an arbitrary viewing window.
C2. Solve an equation numerically.
C3. Compute the derivative of a function numerically.
C4. Compute definite integrals numerically.

Guidelines for Calculator Use
1. On multiple-choice questions in Section I, Part B, you may use any feature or

program on your calculator. Warning: Don’t rely on it too much! Only a few of these
questions require the calculator, and in some cases using it may be too time-consuming
or otherwise disadvantageous.

2. On the free-response questions of Section II Part A:
(a) You may use the calculator to perform any of the four listed procedures. When

you do, you need only write the equation, derivative, or definite integral (called the
“setup”) that will produce the solution, then write the calculator result to the required
degree of accuracy (three places after the decimal point unless otherwise specified). Note
especially that a setup must be presented in standard algebraic or calculus notation, not
just in calculator syntax.  For example, you must include in your work the setup 

even if you use your calculator to evaluate the integral.

(b) For a solution for which you use a calculator capability other than the four 
listed above, you must write down the mathematical steps that yield the answer. A correct
answer alone will not earn full credit.

(c) You must provide mathematical reasoning to support your answer. Calculator
results alone will not be sufficient.

The Procedures Explained
Here is more detailed guidance for the four allowed procedures.

C1. “Produce the graph of a function within an arbitrary viewing window.” Be sure
that you create the graph in the window specified, then copy it carefully onto your exam
paper. If no window is prescribed in the question, clearly indicate the window dimen-
sions you have used.

 
!

0

π
cos t dt
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Introduction 5

C2. “Solve an equation numerically” is equivalent to “Find the zeros of a func-
tion.” Remember: you must first show your setup—write the equation out algebraically;
then it is sufficient just to write down the calculator solution.

C3. “Compute the derivative of a function numerically.” When you seek the value
of the derivative of a function at a specific point, you may use your calculator. First, indi-
cate what you are finding—for example, f !(6)—then write the numerical answer
obtained from your calculator. Note that if you need to find the derivative itself, rather
than its value at a particular point, you must show how you obtained it and what it is,
even though some calculators are able to perform symbolic operations.

C4. “Compute definite integrals numerically.” If, for example, you need to find the
area under a curve, you must first show your setup. Write the complete integral, includ-
ing the integrand in terms of a single variable and with the limits of integration. You may
then simply write the calculator answer; you need not compute an antiderivative.

Sample Solutions of Free-Response Questions
The following set of examples illustrates proper use of your calculator on the examina-
tion. In all of these examples, the function is

.

1. Graph f in [0,4] ¥ [0,3].
Set the calculator window to the

dimensions printed in your exam paper.

Graph y = .

Copy your graph carefully into
the window on the exam paper.

Viewing window [0,4] ¥ [0,3]. .

2. Write the local linearization for f(x) near x = 1.
Note that f(1) = 2. Then, using your calculator, evaluate the derivative:

f !(1) = 1.2

Then write the tangent-line (or local linear) approximation

You need not simplify, as we have, after the last equals sign just above.
 ! 2 1 2 1 1 2 0 8+ − = +. ( ) . .x x

 f x f f x( ) ( ) ( )( )  ! 1 1 1+ ′ −

0 1 2 3 4

1

2

3

10
42

x
x +

  
f x

x
x

x( ) =
+

10
4

0 42 for " "
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3. Find the coordinates of any maxima of f. Justify your answer.
Since finding a maximum is not one of the four allowed procedures, you must

use calculus and show your work, writing the derivative algebraically and setting it
equal to zero to find any critical numbers:

Then f !(x) = 0 at x = 2 and at x = –2; but –2 is not in the specified domain.
We analyze the signs of f ! (which is easier here than it would be to use the 

second-derivative test) to assure that x = 2 does yield a maximum for f :

Since f ! is positive to the left of x = 2 and negative to the right of x = 2, f does
have a maximum at

—but you may leave f (2) in its unsimplified form, without evaluating to .

You may use your calculator’s maximum-finder to verify the result you obtain 
analytically, but that would not suffice as a solution or justification.

4. Find the x-coordinate of the point where the line tangent to the curve y = f (x) is 
parallel to the secant on the interval [0,4].

Since f (0) = 0 and f(4) = 2, the secant passes through (0,0) and (4,2) and has 

slope m = .

To find where the tangent is parallel to the secant, we find f !(x) as in Example 3.
We then want to solve the equation

The last equality above is the setup; we use the calculator to solve the equation: 
x = 1.458 is the desired answer.

5. Estimate the area under the curve y = f (x) using the Trapezoid Rule with four 
equal subintervals.

 
= + + Ê

Ë
ˆ
¯ + Ê

Ë
ˆ
¯ +È

ÎÍ
˘
˚̇

1
2

0 2 2 2
5
2

2
30
13

2( )

T
h

f f f f f= + + + +
2

0 2 1 2 2 2 3 4[ ( ) ( ) ( ) ( ) ( )]

′ = −
+

=f x
x

x
( )

( )
40 10

4
1
2

2

2 2

1
2

5
2

2
10 2
2 4

2
5
22,

( )
,

+




 = 





' ''0                   2                  4

incr decr

+ –

f

f !

′ = + −
+

= −
+

= − +
+

f x
x x x

x
x

x

x x
x

( )
( ) ( )

( ) ( )
( )( )
( )

2
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2

2 2

2 2
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40 10
4
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4
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You may leave the answer in this form or simplify it to 7.808. If your calculator has
a program for the Trapezoid Rule, you may use it to complete the computation after
you have shown the setup as in the two equations above. If you omit them you will
lose credit.

6. Find the volume of the solid generated when the curve y = f (x) on [0,4] is rotated
about the x-axis.

Using disks, we have

,

Note that the equation above is not yet the setup: the definite integral must be in
terms of x alone:

Now we have shown the setup. Using the calculator we can evaluate V:

V = 55.539

A Note About Solutions in This Book
Students should be aware that in this book we sometimes do not observe the restrictions
cited above on the use of the calculator. In providing explanations for solutions to illus-
trative examples or to exercises we often exploit the capabilities of the calculator to the
fullest. Indeed, students are encouraged to do just that on any question of Section I, Part
B, of the AP examination for which they use a calculator. However, to avoid losing
credit, you must carefully observe the restrictions imposed on when and how the calcu-
lator may be used in answering questions in Section II of the examination.

Additional Notes and Reminders
• SYNTAX. Learn the proper syntax for your calculator: the correct way to enter, opera-
tions, functions, and other commands. Parentheses, commas, variables, or parameters
that are missing or entered in the wrong order can produce error messages, waste time, or
(worst of all) yield wrong answers.

• RADIANS. Keep your calculator set in radian mode. Almost all questions about angles and
trigonometric functions use radians. If you ever need to change to degrees for a specific
calculation, return the calculator to radian mode as soon as that calculation is complete. 

• TRIGONOMETRIC FUNCTIONS. Many calculators do not have keys for the secant, cose-
cant, or cotangent function. To obtain these functions, use their reciprocals. 

For example, .

Evaluate inverse functions such as arcsin, arccos, and arctan on your calculator.
Those function keys are usually denoted as sin–1, cos–1, and tan–1. 

sec cosπ( ) = π( )8
1

8

10
42

2x
x

dx
+





 "0

4

V = π

y dx2

 "0

4

V = π

∆ ∆V R H y x= π = π2 2
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Don’t confuse reciprocal functions with inverse functions. For example:

• NUMERICAL DERIVATIVES. You may be misled by your calculator if you ask for the
derivative of a function at a point where the function is not differentiable, because the
calculator evaluates numerical derivatives using the difference quotient (or the symmet-
ric difference quotient). For example, if f(x) = |x|, then f !(0) does not exist. Yet the calcu-
lator may find the value of the derivative as  

= 1     or     = 0.

Remember: always be sure f is differentiable at a before asking for f !(a).

• IMPROPER INTEGRALS. Most calculators can compute only definite integrals. Avoid
using yours to obtain an improper integral, such as

or     

• ROUNDING-OFF ERRORS. To achieve three-place accuracy in a final answer, do 
not round off numbers at intermediate steps, since this is likely to produce error-
accumulations. If necessary, store longer intermediate answers internally in the calcula-
tor; do not copy them down on paper (storing is faster and avoids transcription errors).
Round off only after your calculator produces the final answer.

• ROUNDING THE FINAL ANSWER: UP OR DOWN? In rounding to three decimal places,
remember that whether one rounds down or up depends on the nature of the problem.
The mechanical rule followed in accounting (anything less than 0.0005 is rounded down,
anything equal to or greater than 0.0005 is rounded up) does not apply.

Suppose, for example, that a problem seeks the largest k, to three decimal places, for
which a condition is met, and the unrounded answer is 0.1239 . . . . Then 0.124 is too large:
it does not meet the condition. The rounded answer must be 0.123. However, suppose that
an otherwise identical problem seeks the smallest k for which a condition is met. In this case
0.1239 meets the condition but 0.1238 does not, so the rounding must be up, to 0.124.

• FINAL ANSWERS TO SECTION II QUESTIONS. Although we usually express a final
answer in this book in simplest form (often evaluating it on the calculator), this is hardly
ever necessary on Section II questions of the AP Examination. According to the 
directions printed on the exam, “unless otherwise specified” (1) you need not simplify
algebraic or numerical answers; (2) answers involving decimals should be correct to
three places after the decimal point. However, be aware that if you try to simplify, you
must do so correctly or you will lose credit.

dx
x( )− 1 2 3

 !0

21
2x

dx
 !0

π

f x f x( . ) ( . )
.

+ − −0 001 0 001
0 002

f x f( . ) ( )
.

+ −0 001 0
0 001

cos arccos ;

cos
cos

sec

−

−

( ) = ( ) = π

( ) = =

1

1

1
2

1
2 3

2 1
2

2 ≈≈ −

= ( ) ≈

=

−

−

2 403

2 1
2

0 878

2

1

1

. ;

cos cos . ;

cos ( ) arccoos ,2 which does not exist.
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• USE YOUR CALCULATOR WISELY. Bear in mind that you will not be allowed to use
your calculator at all on Part A of Section I. In Part B of Section I and part of Section II
only a few questions will require one. As repeated often in this section, the questions that
require a calculator will not be identified. You will have to be sensitive not only to when
it is necessary to use the calculator but also to when it is efficient to do so.

The calculator is a marvelous tool, capable of illustrating complicated concepts
with detailed pictures and of performing tasks that would otherwise be excessively
time-consuming—or even impossible. But the completion of calculations and the dis-
playing of graphs on the calculator can be slow. Sometimes it is faster to find an
answer using arithmetic, algebra, and analysis without recourse to the calculator.
Before you start pushing buttons, take a few seconds to decide on the best way to
attack a problem.

GRADING THE EXAMINATIONS
Each completed AP examination paper receives a grade according to the following five-
point scale:

5. Extremely well qualified
4. Well qualified
3. Qualified
2. Possibly qualified
1. No recommendation

Many colleges and universities accept a grade of 3 or better for credit or advanced
placement or both; some also consider a grade of 2. More than 59 percent of the candi-
dates who took the 2009 Calculus AB Examination earned grades of 3, 4, or 5. More than
80 percent of the 2009 BC candidates earned 3 or better. More than 303,000 students
altogether took the 2009 mathematics examination.

The multiple-choice questions in Section I are scored by machine. Students should
note that the scoring formula is (# right) – 1⁄4(# wrong). Often misunderstood as a “penal-
ty for guessing,” this formula is merely an adjustment so that blind or haphazard guess-
ing will not increase the score. Often, however, some of the choices given for a question
can be eliminated as clearly incorrect. This increases the chance of choosing the correct
answer from among only 2 or 3 remaining choices. In such cases, guessing is likely to
increase the Section I score. 

The problems in Section II are graded by college and high-school teachers called
“readers.” The answers in any one examination booklet are evaluated by different 
readers, and for each reader all scores given by preceding readers are concealed, as are
the student’s name and school. Readers are provided sample solutions for each problem,
with detailed scoring scales and point distributions that allow partial credit for correct
portions of a student’s answer. Problems in Section II are all counted equally.

In the determination of the overall grade for each examination, the two sections are
given equal weight. The total raw score is then converted into one of the five grades list-
ed above. Students should not think of these raw scores as percents in the usual sense of
testing and grading. A student who averages 6 out of 9 points on the Section II questions
and performs similarly well on Section I’s multiple-choice questions will typically earn a
5. Many colleges offer credit for a score of 3, historically awarded for earning over 40 of
108 possible points. 

Students who take the BC examination are given not only a Calculus-BC grade but
also a Calculus-AB subscore grade. The latter is based on the part of the BC examination
dealing with topics in the AB syllabus.

Introduction 9
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In general, students will not be expected to answer all the questions correctly in
either Section I or II. 

Great care is taken by all involved in the scoring and reading of papers to make 
certain that they are graded consistently and fairly so that a student’s overall AP grade
reflects as accurately as possible his or her achievement in calculus.

THE CLEP CALCULUS EXAMINATION
Many colleges grant credit to students who perform acceptably on tests offered by the
College Level Examination Program (CLEP). The CLEP calculus examination is one
such test.

The College Board’s CLEP Official Study Guide: 16th Edition provides descrip-
tions of all CLEP examinations, test-taking tips, and suggestions on reference and sup-
plementary materials. According to the Guide, the calculus examination covers topics
usually taught in a one-semester college calculus course. It is assumed that students tak-
ing the exam will have studied college-preparatory mathematics (algebra, plane and solid
geometry, analytic geometry, and trigonometry).

There are 45 multiple-choice questions on the CLEP calculus exam, for which 90
minutes are allowed. A calculator may not be used during the examination.

Approximately 60 percent of the questions are on limits and differential calculus
and about 40 percent on integral calculus. The specific topics that may be tested on the
CLEP calculus exam are essentially those on pages vii and viii under the heading “Topics
That May Be Tested on the Calculus AB Exam.” (L’Hôpital’s Rule is listed as a CLEP
calculus topic but only as a BC topic for the AP exam. Also, the only topics listed as
applications of the definite integral for the CLEP calculus test are “average value of a
function on an interval” and “area.”)

Since any topic that may be tested on the CLEP calculus exam is included in this
book on the AP Exam, a candidate who plans to take the CLEP exam will benefit from a
review of the AB topics covered here. The multiple-choice questions in Part A of Chapter
11 and in Part A of Section I of each of the four AB Practice Examinations will provide
good models for questions on the CLEP calculus test.

A complete description of the knowledge and skills required and of the specific 
topics that may be tested on the CLEP exam can be downloaded from the College
Board’s web site at www.collegeboard.com/clep.

THIS REVIEW BOOK
This book consists of the following parts:

Diagnostic tests for both AB and BC Calculus are practice AP exams. They are fol-
lowed by solutions keyed to the corresponding topical review chapter.

Topical Review and Practice includes 10 chapters with notes on the main topics of
the Calculus AB and BC syllabi and with numerous carefully worked-out examples.
Each chapter concludes with a set of multiple-choice questions, usually divided into cal-
culator and no-calculator sections, followed immediately by answers and solutions.

This review is followed by further practice: (1) Chapter 11, which includes a set of
multiple-choice questions on miscellaneous topics and an answer key; (2) Chapter 12, a
set of miscellaneous free-response problems that are intended to be similar to those in
Section II of the AP examinations. They are followed by solutions. 

10 AP Calculus
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The next part of the book, titled Practice Examinations: Sections I and II, has three
AB and three BC practice exams that simulate the actual AP examinations. Each is fol-
lowed by answers and explanations.

In this book, review material on topics covered only in Calculus BC is preceded by
an asterisk (*), as are both multiple-choice questions and free-response-type problems
that are likely to occur only on a BC Examination.

THE TEACHER WHO USES THIS BOOK WITH A CLASS may profitably do so in any of sev-
eral ways. If the book is used throughout a year’s course, the teacher can assign all or part
of each set of multiple-choice questions and some miscellaneous exercises after the topic
has been covered. These sets can also be used for review purposes shortly before exami-
nation time. The Practice Examinations will also be very helpful in reviewing toward the
end of the year. Teachers may also assemble examinations by choosing appropriate prob-
lems from the sample Miscellaneous Practice Questions in Chapters 11 and 12.

STUDENTS WHO USE THIS BOOK INDEPENDENTLY will improve their performance by
studying the illustrative examples carefully and trying to complete practice problems
before referring to the solution keys.

Since many FIRST-YEAR MATHEMATICS COURSES IN COLLEGES follow syllabi much like
that proposed by the College Board for high-school Advanced Placement courses, col-
lege students and teachers may also find the book useful.

Introduction 11
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1   A     B     C     D     E  A     B     C     D     E

2   A     B     C     D     E  A     B     C     D     E

3   A     B     C     D     E  A     B     C     D     E

4   A     B     C     D     E  A     B     C     D     E

5   A     B     C     D     E  A     B     C     D     E

6   A     B     C     D     E  A     B     C     D     E

7   A     B     C     D     E  A     B     C     D     E

8   A     B     C     D     E  A     B     C     D     E

9   A     B     C     D     E  A     B     C     D     E

10   A     B     C     D     E  A     B     C     D     E

11   A     B     C     D     E  A     B     C     D     E

12   A     B     C     D     E  A     B     C     D     E

13   A     B     C     D     E  A     B     C     D     E

14   A     B     C     D     E  A     B     C     D     E

15   A     B     C     D     E  A     B     C     D     E

16   A     B     C     D     E  A     B     C     D     E

17   A     B     C     D     E  A     B     C     D     E

18   A     B     C     D     E  A     B     C     D     E

19   A     B     C     D     E  A     B     C     D     E

20   A     B     C     D     E  A     B     C     D     E

21   A     B     C     D     E  A     B     C     D     E

22   A     B     C     D     E  A     B     C     D     E

23   A     B     C     D     E  A     B     C     D     E

24   A     B     C     D     E  A     B     C     D     E

25   A     B     C     D     E  A     B     C     D     E

26   A     B     C     D     E  A     B     C     D     E

27   A     B     C     D     E  A     B     C     D     E

28   A     B     C     D     E  A     B     C     D     E

29   A     B     C     D     E  A     B     C     D     E

30   A     B     C     D     E  A     B     C     D     E

31   A     B     C     D     E  A     B     C     D     E

32   A     B     C     D     E  A     B     C     D     E

33   A     B     C     D     E  A     B     C     D     E

34   A     B     C     D     E  A     B     C     D     E

35   A     B     C     D     E  A     B     C     D     E

36   A     B     C     D     E  A     B     C     D     E

37   A     B     C     D     E  A     B     C     D     E

38   A     B     C     D     E  A     B     C     D     E

39   A     B     C     D     E  A     B     C     D     E

40   A     B     C     D     E  A     B     C     D     E

41   A     B     C     D     E  A     B     C     D     E

42   A     B     C     D     E  A     B     C     D     E

43   A     B     C     D     E  A     B     C     D     E

44   A     B     C     D     E  A     B     C     D     E

45   A     B     C     D     E  A     B     C     D     E

Answer Sheet
D I A G N O S T I C  T E S T  C A L C U L U S  A B

Part A

29   A     B     C     D     E  A     B     C     D     E

30   A     B     C     D     E  A     B     C     D     E

31   A     B     C     D     E  A     B     C     D     E

32   A     B     C     D     E  A     B     C     D     E

33   A     B     C     D     E  A     B     C     D     E

34   A     B     C     D     E  A     B     C     D     E

35   A     B     C     D     E  A     B     C     D     E

36   A     B     C     D     E  A     B     C     D     E

37   A     B     C     D     E  A     B     C     D     E

38   A     B     C     D     E  A     B     C     D     E

39   A     B     C     D     E  A     B     C     D     E

40   A     B     C     D     E  A     B     C     D     E

41   A     B     C     D     E  A     B     C     D     E

42   A     B     C     D     E  A     B     C     D     E

43   A     B     C     D     E  A     B     C     D     E

44   A     B     C     D     E  A     B     C     D     E

45   A     B     C     D     E  A     B     C     D     E

Part B

!
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11. is

(A) 3 (B) 1 (C) !3 (D) " (E) 0

12. is

(A) 1 (B) nonexistent (C) 0 (D) !1 (E) none of these

13. If, for all x, f ′(x) = (x – 2)4(x – 1)3, it follows that the function f has

(A) a relative minimum at x = 1
(B) a relative maximum at x = 1
(C) both a relative minimum at x = 1 and a relative maximum at x = 2
(D) neither a relative maximum nor a relative minimum
(E) relative minima at x = 1 and at x = 2

14. Let . Which of the following statements is (are) true?

I. F′(0) = 5
II. F(2) < F(6)

III. F is concave upward.

(A) I only (B) II only (C) III only
(D) I and II only (E) I and III only

F x
e

dtt

x
( ) =

+∫ 10
10

lim
cos

h

h

h→

+( )
0

2
π

lim
x

x
x x→∞

−
− −
3 4

2 7

2

2

17

Diagnostic Test Calculus AB

The use of calculators is not permitted for this part of the examination.
There are 28 questions in Part A, for which 55 minutes are allowed. To compensate
for possible guessing, the grade on this part is determined by subtracting one-fourth
of the number of wrong answers from the number answered correctly.

Directions: Choose the best answer for each question.

SECTION I 

Part A TIME:  55 MINUTES Di
ag

no
st

ic
 T

es
t C

al
cu

lu
s 

AB
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15. If f(x) = 10x and 101.04 ! 10.96, which is closest to f ′(1)?

(A) 0.24 (B) 0.92 (C) 0.96 (D) 10.5 (E) 24

16. If f is differentiable, we can use the line tangent to f at x = a to approximate values of
f near x = a. Suppose this method always underestimates the correct values. If so,
then at x = a, the graph of f must be

(A) positive (B) increasing (C) decreasing
(D) concave upward (E) concave downward

17. If f(x) = cos x sin 3x, then is equal to

(A) (B) (C) 0 (D) 1 (E)

18. is equal to

(A) (B) ln (C) (ln 2 – 1) (D) (E) ln 2

19. The graph of f # is shown below. If f ′(1) = 0, then f ′(x) = 0 at x =

(A) 0 (B) 2 (C) 3 (D) 4 (E) 7

f ′′

4

3

2

2 4 6 8

–2

– 4

x

3
2

1
22

π
4

x dx
x20

1

1+∫

− 1
2− 3

2
1
2

′ 



f

π
6
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ABQuestions 10 and 11. Use the following table, which shows the values of differentiable
functions f and g. 

10. If P(x) = g2(x), then P$(3) equals

(A) 4 (B) 6 (C) 9 (D) 12 (E) 18

11. If H(x) = f –1(x), then H $(3) equals

(A) (B) (C) (D) (E) 1

12. The total area of the region bounded by the graph of and the x-axis is

(A) (B) (C) (D) (E) 1

13. The curve of y = is concave upward when

(A) x % 3 (B) 1 & x & 3 (C) x % 1 (D) x & 1 (E) x & 3

14. As an ice block melts, the rate at which its mass, M, decreases is directly propor-
tional to the square root of the mass. Which equation describes this relationship?

(A) (B) (C)

(D) (E)

15. The average (mean) value of tan x on the interval from x = 0 to is

(A) ln (B) ln 2 (C) ln 2 (D) (E)

16.

(A) !cos (x2) ' C (B) cos (x2) ' C (C)

(D) 2x cos x2 ' C (E) none of these

− +cos x
x

C
2

2

sin( )x dx2∫ =

9
π

3
2

3
π

1
2

x = π
3

dM
dt

k
M

=dM
dt

k M=

dM
dt

k t=M t kt( ) =M t k t( ) =

1
3

−
−

x
x

2
3

1
2

1
3

21
3

y x x= −1 2

1
2− 1

2
− 1

8
− 1

16

x f f $ g g$

1 2 !3 5

2 3 1 !0 4

3 4 2 !2 3

4 6 4 !3 1
2

1
2
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AB 17. Water is poured at a constant rate into the conical reservoir shown in the figure. 

If the depth of the water, h, is graphed as a function of time, the graph is

(A) decreasing (B) constant (C) linear
(D) concave upward (E) concave downward

18. If , then

(A) f(x) is not continuous at x = 1

(B) f(x) is continuous at x = 1 but f ′(1) does not exist

(C) f ′(1) exists and equals 1

(D) f ′(1) = 2

(E) f(x) does not exist

19. is

(A) !" (B) !1 (C) 1 (D) " (E) nonexistent

Questions 20 and 21. The graph below consists of a quarter-circle and two line segments,
and represents the velocity of an object during a 6-second interval.

20. The object’s average speed (in units/sec) during the 6-second interval is

(A) (B) (C) !1 (D) (E) 1− 1
3

4 3
6

π −4 3
6

π +

4

2

2 4 5 6

–2

t (sec)

v

lim
x

x
x→ −

−
−2

2
2

lim
x→1

f x
x x

x x
( ) =

≤
− >





2 1

2 1 1

for

for

h
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AB21. The object’s acceleration (in units/sec2) at t = 4.5 is

(A) 0 (B) –1 (C) –2 (D) (E)

22. Which of the following equations can be a solution of the differential equation 
whose slope field is shown above?

(A) 2xy = 1 (B) 2x + y = 1 (C) 2x2 + y2 = 1
(D) 2x2 - y2 = 1 (E) y = 2x2 ' 1

23. If y is a differentiable function of x, then the slope of the curve of 
xy2 ! 2y ' 4y3 = 6 at the point where y = 1 is

(A) (B) (C) (D) (E) 2

24. In the following, L(n), R(n), M(n), and T(n) denote, respectively, left, right, 
midpoint, and trapezoidal sums with n subdivisions. Which of the following 

is not equal exactly to ?

(A) L(2) (B) M(2) (C) T(3) (D) M(4) (E) R(6)

25. is equal to

(A) 0 (B) b ! a (C) a ! b (D) (E) g(b) ! g(a)g t dt
a

b
( )∫

g t dt g t dt
a

x

b

x
( ) ( )∫ ∫−

x dx
−∫ 3

3

− 11
18

5
18

− 1
26− 1

18

4 1
4

π −− 1
4
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(A) (B) (C) (D) (E)

26. The solution of the differential equation for which y = !1 when x = 1 is

(A) for x ≠ 0 (B) for x > 0 (C) ln y2 = x2 – 1 for all x

(D) for x ≠ 0 (E) for x = 0

27. The base of a solid is the region bounded by the parabola y2 = 4x and the line 
x = 2. Each plane section perpendicular to the x-axis is a square. The volume of 
the solid is

(A) 6 (B) 8 (C) 10 (D) 16 (E) 32

28. Which of the following could be the graph of y = ?x
ex

2

y
x

= − 1y
x

= − 1

y
x

= − 1
2y

x
= − 1

2

dy
dx

xy= 2 2

END OF PART A, SECTION I

STOP
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29. If F(3) = 8 and F ¢(3) = !4 then F(3.02) is approximately

(A) !8.08 (B) 7.92 (C) 7.98 (D) 8.02 (E) 8.08

30. An object moving along a line has velocity v(t) = t cos t ! ln (t " 2), where 
0 # t # 10. How many times does the object reverse direction?

(A) none (B) one (C) two (D) three (E) four

Questions 31 and 32. Refer to the graph of f $ below. 

31. f has a local minimum at x =

(A) 0 only (B) 4 only (C) 0 and 4 (D) 0 and 5 (E) 0, 4, and 5

32. The graph of f has a point of inflection at x =

(A) 2 only (B) 3 only (C) 4 only
(D) 2 and 3 only (E) 2, 3, and 4

33. For what value of c on 0 < x < 1 is the tangent to the graph of f (x) = ex - x2 parallel
to the secant line on the interval [0,1]? 

(A) !0.248 (B) 0.351 (C) 0.500 (D) 0.693 (E) 0.718

x
1 2 3 4 5

f ′

Some questions in this part of the examination require the use of a graphing 
calculator. There are 17 questions in Part B, for which 50 minutes are allowed. 
The deduction for incorrect answers on this part is the same as that for Part A. 

Directions: Choose the best answer for each question. If the exact numerical value 
of the correct answer is not listed as a choice, select the choice that is closest to the 
exact numerical answer.

Part B TIME:  50 MINUTES
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AB 34. Find the volume of the solid generated when the region bounded by the y-axis, y = ex,

and y = 2 is rotated around the y-axis.

(A) 0.296 (B) 0.592 (C) 2.427 (D) 3.998 (E) 27.577

35. The table below shows the “hit rate” for an Internet site, measured at various inter-
vals during a day. Use a trapezoid approximation to estimate the total number of 
people who visited that site.

Time Midnight 6 A.M. 8 A.M. Noon 5 P.M. 8 P.M. Midnight

People per 5 2 3 8 10 16 5
minute

(A) 5280 (B) 10,080 (C) 10,440 (D) 10,560 (E) 15,840

36. The acceleration of a particle moving along a straight line is given by a = 6t. If, when
t = 0, its velocity, v, is 1 and its position, s, is 3, then at any time t

(A) s = t3 ! 3 (B) s = t3 ! 3t ! 1 (C) s = t3 ! t ! 3

(D) (E)

37. If y = f(x2) and then is equal to

(A) (B) (C)

(D) (E) none of these

38. Find the area of the first quadrant region bounded by y = x2, y = cos (x), and the 
y-axis.

(A) 0.292 (B) 0.508 (C) 0.547 (D) 0.667 (E) 0.921

39. If the substitution x = 2t ! 1 is used, which of the following is equivalent to 

?

(A) (B) (C) (D)

(E)

40. At noon, an experimenter has 50 grams of a radioactive isotope. At noon 9 days later
only 45 grams remain. To the nearest day, how many days after the experiment
started will there be only 20 grams?

(A) 54 (B) 59 (C) 60 (D) 75 (E) 78

2 4

1

7
x dx∫

1
2

4

1

7
x dx∫1

2
4

1
2

1
x dx

−∫1
2

4

0

3
x dx∫x dx4

0

3

∫

2 14

0

3
t dt+∫

5 1
2
x
x

−

2 5 1x x −5 1x −2 5 12x x −

dy
dx

′ = −f x x( ) 5 1

s t t= + +
3 2

3 2
3s t t= + +

3

3
3
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AB41. A 26-foot ladder leans against a building so that its foot moves away from the 
building at the rate of 3 feet per second. When the foot of the ladder is 10 feet from
the building, the top is moving down at the rate of r feet per second, where r is

(A) (B) (C) (D) (E)

42. If , then F ′(x) = 

(A) (B) (C) (D) (E)

43. The graph above shows an object’s acceleration (in ft/sec2). It consists of a 
quarter-circle and two line segments. If the object was at rest at t = 5 seconds, 
what was its initial velocity?

(A) !2 ft/sec (B) 3 ! π ft/sec (C) 0 ft/sec
(D) π ! 3 ft/sec (E) π ' 3 ft/sec

44. Water is leaking from a tank at the rate of R(t) = 5 arc tan gallons per hour, 

where t is the number of hours since the leak began. How many gallons will leak 
out during the first day?

(A) 7 (B) 82 (C) 124 (D) 141 (E) 164

45. Find the y-intercept of the line tangent to y = (x3 – 4x2 + 8)ecos x2 at x = 2.

(A) !21.032 (B) !2.081 (C) 0 (D) 4.161 (E) 21.746

t
5( )

t
1 2

2

–2

3 4 5

a(ft/sec2)

(sec)

2
1 8 3− x

1
1 8 3− x

2
1 2 3− x

1
1 2 3− x

1
1 3− x

F x
t

dt
x

( ) =
−∫ 1

1 31

2

4
5

5
2

5
4

3
4

46
3

END OF SECTION I

STOP
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AB SECTION II 

Part A TIME:  45 MINUTES

3 PROBLEMS

A graphing calculator is required for some of these problems. 
See instructions on page 4.

1. Let h be a function that is even and continuous on the closed interval [!4,4].  
The function h and its derivatives have the properties indicated in the table below.
Use this information to sketch a possible graph of h on [!4,4].

2. An object in motion along the x-axis has velocity n(t) = (t + et)sin t2 for 1 ≤ t ≤ 3.

(a) Sketch the graph of velocity as a function of time in the window 
[1,3] ¥ [!15,20].

(b) When is the object moving to the left?

(c) Give one value of t from the interval in part (b) at which the speed of the 
object is increasing.

(d) At t = 1 this object’s position was x = 10. Where is the object when t = 3?

x h(x) h¢(x) h≤(x)

0 ! 0 '

0 < x < 1 ! ' '

1 0 ' 0

1 < x < 2 ' ' !

2 ' 0 0

2 < x < 3 ' ' '

3 ' undefined undefined

3 < x < 4 ' ! !
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Note: Scales are different on the three figures.

3. The sides of a watering trough are made by folding a sheet of metal 24 inches wide
and 5 feet long at an angle of 60°, as shown in the figure above. Ends are added, and
then the trough is filled with water.

(a) If water pours into the trough at the rate of 600 cubic inches per minute, how fast
is the water level rising when the water is 4 inches deep?

(b) Suppose, instead, the sheet of metal is folded twice, keeping the sides of equal
height and inclined at an angle of 60°, as shown. Where should the folds be in 
order to maximize the volume of the trough? Justify your answer. 

24"

5'  

5'

12"
12"

60°

60°

END OF PART A, SECTION II

STOP
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AB Part B TIME:  45 MINUTES

3 PROBLEMS

No calculator is allowed for any of these problems.
If you finish Part B before time has expired, you may return to work on Part A, but you
may not use a calculator.

4. Let C represent the curve determined by for –2 ≤ x ≤ 11.

(a) Let R represent the region between C and the x-axis. Find the area of R.

(b) Set up, but do not solve, an equation to find the value of k such that the line 
x = k divides R into two regions of equal area.

(c) Set up an integral for the volume of the solid generated when R is rotated around
the x-axis.

5. Let y = f(x) be the function that has an x-intercept at (2,0) and satisfies the differential 

equation 

(a) Solve the differential equation, expressing y as a function of x and specifying 
the domain of the function.

(b) Find the equation of each horizontal asymptote to the graph of y = f(x).

6. The graph of function f consists of the semicircle and line segment shown in the 

figure. Define the area function for 0 ≤ x ≤ 18.

(a) Find A(6) and A(18).

(b) What is the average value of f on the interval 0 ≤ x ≤ 18?

(c) Write the equation of the line tangent to the graph of A at x = 6. 

(d) Use this line to estimate the area between f and the x-axis on [0,7].

(e) Give the coordinates of any points of inflection on the graph of A. 
Justify your answer.

6

0 6

f
(18,6)

12 18

  
A x f t dt

x

( ) = ( )"
0

 
x e

dy
dx

y2 4= .

f x
x

( ) =
+

6

2 53

END OF TEST

STOP
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Answer Key
D I A G N O S T I C  T E S T  C A L C U L U S  A B

11. C (2)
12. D (3)
13. A (4)
14. D (6)
15. E (3)
16. D (4)
17. E (3)

18. B (5)
19. C (6)
10. D (3)
11. E (3)
12. D (7)
13. E (4)
14. D (9)

15. B (6)
16. E (5)
17. E (4)
18. D (3)
19. B (2)
20. A (6)
21. C (6)

22. D (9)
23. A (3)
24. C (6)
25. D (6)
26. B (9)
27. E (7)
28. C (2)

29. B (4)
30. C (8)
31. D (4)
32. D (4)
33. B (3)

34. B (7)
35. C (6)
36. C (8)
37. A (3)

38. C (7)
39. D (6)
40. E (9)
41. C (4)

42. E (4)
43. D (6)
44. C (8)
45. D (4)

NOTE: Chapters that review and offer additional practice for each topic are specified in parentheses.

Part A

Part B
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Multiple-Choice

Part A
11. (C) Use the Rational Function Theorem (page 96).

12. (D) .

13. (A) Although f ′(2) = f ′(1) = 0, f ′(x) changes sign only as x increases through 1,
and in this case f ′(x) changes from negative to positive.

14. (D) , and .

15. (E) .

16. (D) The graph must look like one of these two:

17. (E) F ′(x) = 3 cos x cos 3x – sin x sin 3x. 

18. (B)

19. (C) Let f ′(x) = . Then f $ increases for 1 & x & 2, then begins to 

decrease. In the figure above, the area below the x-axis, from 2 to 3, is equal 

in magnitude to that above the x-axis, hence, .′′ =∫ f t dt( )
1

3
0

′′∫ f t dt
x

( )
1

1 2 3

f "(x)

x

x dx
x

x20

1 2

0

1

1
1
2

1

1
2

2 1

2

+
= +( )
= −( )
=

∫ ln

ln ln

ln

 
′ 



 = 









 − 

F
π π

6
π
2

π
66

3cos cos sin 






 = −sin

π
2

3
3

2
0

1
2

1i i i

a, f (a) a, f (a)

′ ≈ −
−

=f
f f

( )
( . ) ( )

.
.
.

1
1 04 1
1 04 1

0 96
0 04

′′ = −
+

<F x e
e

x

x( )
( )

10
1

02′ =
+

>F x
ex( ) 10

1
0

lim
cos

lim sin
h h

h

h
h

h→ →

+( )
= − = −

0 0
1

π
2
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AB10. (D) P ′(x) = 2g(x) · g ′(x)

11. (E) Note that H(3) = f -1 (3) = 2. Therefore

. 

12. (D) Note that the domain of y is all x such that |x| ( 1 and that the graph is 
symmetric to the origin. The area is given by

13. (E) Since

y ′ = 2(x – 3)–2 and ,

y # is positive when x & 3.

14. (D) represents the rate of change of mass with respect to time; y is 

directly proportional to x if y = kx.

15. (B) .

16. (E) [cos (x2)]$ = !sin (x2) . 2x. The missing factor 2x cannot be created through 
introduction of constants alone.

17. (E) As the water gets deeper, the depth increases more slowly. Hence, the rate 

of change of depth decreases: .

x

y

0

(1,1)

f (x) =
x2

2x – 1 x > 1

x    1=<

d h

dt

2

2 0<

1
3

3 3 1
20

3

0
3

π π π
π π

/
tan ln cos ln

/ /x dx x= −[ ] = −
∫ 



dM
dt

′′ = − − = −
−

−y x
x

4 3
4

3
3

3( )
( )

2 1 2
0

1
x x dx−∫ .

′ =
′

=
′

=H
f H f

( )
( ( )) ( )

3
1

3
1
2

1
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AB 18. (D) The graph of f is shown in the figure above; f is defined and continuous at

all x, including x = 1. Since

,

f !(1) exists and is equal to 2.

19. (B) Since |x " 2| = 2 " x if x # 2, the limit as x Æ 2" is .

20. (A) Average speed =

20. A. The average sp = .

Note that the distance covered in 6 seconds is , the area between

the velocity curve and the t-axis.

21. (C) Acceleration is the slope of the velocity curve, .

22. (D) Particular solutions appear to be branches of hyperbolas. See page 21.

23. (A) Differentiating implicitly yields 2xyy! + y2 – 2y! + 12y2y! = 0. When y = 1, 
x = 4. Substitute to find y!.

24. (C)

25. (D)

26. (B) Separate to get , . Since "("1) = 1 $ C implies 

that C = 0, the solution is or .

This function is discontinuous at x = 0. Since the particular solution must 
be differentiable in an interval containing initial value x = 1, the domain 
is x > 0.

y
x

= − 1
2

− =1 2

y
x

− = +1 2

y
x C

dy

y
x dx2 2=

g t dt g t dt g t dt g t dt
a

x

b

x
( ) ( ) ( ) ( )− = +∫ ∫ x

b

a

x

a

b
g t dt∫∫ ∫= ( ) .

− −
−

2 0
5 4

v t dt( )
0

6
∫

1
4

4
1
2

1 2 1 2

6

2π( ) ( )+ ⋅ + ⋅

distance covered in 6 sec
time elapsed

2
2

1
−
−

= −x
x

lim ( ) lim ( )
x x

f x f x
→ →− +

′ = = ′
1 1

2
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AB27. (E)

28. (C) Note that , , and ) 0 for all x.

Part B
29. (B) At x = 3, the equation of the tangent line is y – 8 = –4(x – 3),

so f(x) ! –4(x – 3) + 8. f(3.02) ! –4(0.02) + 8.

30. (C)

The velocity is graphed in [!1, 11] * [!15, 5]. The object reverses 
direction when the velocity changes sign, that is, when the graph crosses 
the x-axis. There are two such reversals—at x = a and at x = b.

31. (D) The sign diagram shows that f changes from increasing to decreasing

f inc inc dec
0 2 4 5

f + + –

and thus f has a maximum at x = 4. Because f increases to the right of x = 0
and decreases to the left of x = 5, there are minima at the endpoints.

32. (D) Since f $ decreases, increases, then decreases, f # changes from negative to
positive, then back to negative. Hence, the graph of f changes concavity at 
x = 2 and x = 3.

–10

10

4

v

a b
t

x
ex

2
lim

x x
x
e→−∞

= ∞
2

lim
x x

x
e→∞

=
2

0

x

y

0
(2,0)

∆ x

(x,y)

y2 = 4x

;

= 32.

= ∫4 4
0

2
x dx

V y dx= ∫4 2
0

2

∆ = ∆V y x( )2 2
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On the curve of f(x) = ex – x2, the two points labeled are (0,1) and (1,e ! 1). 

The slope of the secant line is m = = = e – 2. Find c in [0,1] such

that, f "(c) = e – 2, or f "(c) – (e – 2) = 0. Since f "(x) = ex – 2x, c can be
calculated by solving 0 = ex ! 2x ! (e ! 2). The answer is 0.351.

34. (B)

Use disks; then #V = $R2H = $(ln y)2 #y. Note that the limits of the defi-
nite integral are 1 and 2. Evaluate the integral

Alternatively, use shells*; then ∆V = 2πRHT = 2πx(2 – ex) ∆x. Here, the 
upper limit of integration is the value of x for which ex = 2, namely, ln 2.
Now evaluate

*No question requiring the use of the shells method will appear on the AP exam.

2 2 0 592
0

π x e dxx−( ) =∫ .
ln

π x x dxln .( ) =∫ 2

1

2
0 592

x

y

0

(x,y)

y = 2

y = ex

1

x

y

0

(x,y)

y = 2

y = ex

1

e − 2
1

∆
∆

y
x

y

2

1.5

1(0,1)

y = ex– x2

(1,e–1)

0.5

0 0.5 1 1.5 2
x
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AB35. (C) Note that the rate is people per minute, so the first interval width from 
midnight to 6 A.M. is 360 minutes. The total number of people is estimated
as the sum of the areas of six trapezoids:

T = 360 + 120 + 240 + 300 +

180 + 240 = 10,440

36. (C) a = = 6t, so v = 3t3 ! c.

Since v = 1 when t = 0, c = 1.

Now v = = 3t2 + 1, so s = t3 + t + c.

Since, s = 3 when t = 0, c = 3; then s = t3 + t + 3.

37. (A) Let u = x2. Then

38. (C)

To find a, the point of intersection of y = x2 and y = cos (x), use your calculator
to solve the equation x2 - cos (x) = 0. (Store the value for later use; a ≈ 0.8241.)

As shown in the diagram above, ∆A = (cos (x) – x2)∆x.

Evaluate the area: .

39. (D) If x = 2t ! 1, then , so . When t = 0, x = 1; when t = 3, x = 7.

40. (E) Use A(t) = A0e
kt, where the initial amount A0 is 50. Then A(t) = 50ekt. Since 

45g remain after 9 days, 45 = 50ek . 9, which yields .

To find t when 20g remain, solve 20 = 50e t

Thus, .t = =9 0 4
0 9

78 3ln .
ln .

.

ln .0 9
9







k = ln .0 9
9

dt dx= 1
2

t x= − 1
2

A x x dx= −( ) ≈∫ cos ( ) .
0

a 2 0 547

∆A

a

y

y = cos x

y = x2

x

dy
dx

dy
du

du
dx

df
du

f u du
dx

u= = ′ = −· · ( ) 5 11 2 2 5 12· x x x= −

ds
dt

dv
dt

16 5
2
+( )10 16

2
+( )

8 10
2

+( )3 8
2
+( )2 3

2
+( )5 2

2
+( )
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41. (C) See the figure above. Since x2 ' y2 = 262, it follows that

at any time t. When x = 10, then y = 24 and it is given that .

Hence, 2(10)(3) + 2(24) = 0, so = – .

42. (E) Let u = 2x and note that . 

Then .

43. (D) v(5) ! v(0) = . Since v(5) = 0, 

!v(0) = !π ' 3; so v(0) = π ! 3.

44. (C)

45. (D) Let y = (x3 ! 4x2 ' 8)ecos(x2). The equation of the tangent at point (2,y (2)) 
is y ! y(2) = y$(2)(x ! 2). Note that y(2) = 0. To find the y-intercept, let 
x = 0 and solve for y: y = !2y$(2). A calculator yields y = 4.161.

5
5

124 102
0

24
arctan .t dt( ) =∫

 
a t dt( ) ( ) ( )

0

5 21
4

2 1
2

3 2 3∫ = − + = − +π πi

′ = ′ ′ = ′ =
−

F x F u u x F u
x

( ) ( ) ( ) ( )
( )

2 2 1
1 2 3

i i

′ =
−

F x
u

( ) 1
1 3

5
4

dy
dt

dy
dt

dx
dt

= 3

2 2 0x dx
dt

y
dy
dt

+ =

26 y

x
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ABFree-Response

Part A
AB 1. One possible graph of h is shown; it has the following properties:

• continuity on [-4,4],
• symmetry about the y-axis,
• roots at x = -1, 1,
• horizontal tangents at x = -2, 0, 2,
• points of inflection at x = -3, -2, -1, 1, 2, 3,
• corners at x = - 3, 3.

(Review Chapter 4)

AB/BC 2. (a) Graph y = (x +ex) sin (x2) in [1, 3] * [–15, 20]. Note that y represents 
velocity v and x represents time t.

(b) The object moves to the left when the velocity is negative, namely, on the
interval p < t < r. Use the calculator to solve (x + ex)(sin (x2)) = 0; then 
p = 1.772 and r = 2.507.  The answer is 1.772 < t < 2.507.

(c) As the object moves to the left (with v(t) negative), the speed of the object
increases when its acceleration v¢(t) is also negative, that is, when v(t) is 
decreasing. This is true when, for example, t = 2.

–4 –3 –2 –1 1 2 3 4
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AB (d) The displacement of an object from time t1 to time t2 is equal to 

.

Evaluate this integral on the calculator; to three decimal places the answer
is 4.491. This means that at t = 3 the object is 4.491 units to the right of 
its position at t = 1, given to be x = 10. Hence, at t = 3 the object is at 
x = 10 + 4.491 = 14.491.

(Review Chapter 8)

AB/BC3. (a) Let h represent the depth of the water, as shown.

Then h is the altitude of an equilateral triangle, and the base 

The volume of water is 

in.3

Now and it is given that Thus, when h = 4, 

and in/min.

(b) Let x represent the length of one of the sides, as shown. 

The bases of the trapezoid are 24 – 2x and and the height is

x
2

x
2

x
2

x x

24 – 2x

24 – 2x

3

60°

x
2

3.

 
24 2 2

2
- +x

x
,

dh
dt

= 5 3
4

600
120

3
4= dh

dt
,

dV
dt

= 600.
dV
dt

h
dh
dt

= 120
3

,

V
h

h
h= Ê

ËÁ
ˆ
¯̃ =1

2
2

3
60

60
3

2

•

b
h= 2
3

.

h

h /  3

v t dt t e t dt
t

t t( ) 2= +( ) ( )∫ ∫
1

2

1

3
sin
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ABThe volume of the trough (in in.3) is given by

Since the maximum volume is attained by folding the
metal 8 inches from the edges.

(Review Chapter 4)

Part B
AB 4. (a) Draw elements as shown. Then

(b)

(c) Revolving the element around the x-axis generates disks. Then

(Review Chapter 7)

 

∆ ∆ ∆ ∆V r x y x
x

x

V
x

= = =
+







=
+

p p p2 2

3

2
6

2 5
36

2

, so

π
55 2 32

11

( )−∫ dx.

6
2 5

6
2 532 3

11

x
dx

x
dx

k

k+
=

+−∫ ∫ .

5.0

–1.0

–2 10

(11,2)

(–2,6)

C

∆ ∆ ∆A y x
x

x

A
x

dx x

= =
+

=
+

= +( )
−

−∫

6
2 5

6
2 5

6
2

2 5

3

32

11 1 3

,

22

3 3
2

2 5 9
2

27 1 3

2

11

2
3

2

11
2 3 2 3

dx

x

( )

= +( ) = −( ) =

−

−

∫
• 66.

 ¢¢ = -( ) <V 15 3 6 0,

 

V
x x x

x x x

V x x

= -( ) + -( ) ¥ = -( ) < <( )

¢ = -( ) = =

24 2 24
2 2

3 60 15 3 48 3 0 12

15 3 48 6 0 8

2• ,

. when 
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AB 5. (a) The differential equation is separable:

If y = 0 when x = 2, then thus c = 3, and 

Solving for y gives the solution: 

Note that is defined only if 

only if the numerator and denominator have the same sign.

Since the particular solution must be continuous on an interval containing 

the initial point x = 2, the domain is x > . (Review Chapter 9)

(b) Since the function has a horizontal

asymptote at y = ln 3. (Review Chapter 2)

AB/BC 6. (a)

(b) The average value of 

(c) The line tangent to the graph of A at x = 6 passes through point (6, A(6))
or (6, 9π). Since A¢(x) = f(x), the graph of f shows that A¢(6) = f(6) = 6.
Hence, an equation of the line is y -9π = 6(x - 6).

(d) Use the tangent line; then A(x) = y ª 6(x - 6) + 9π, so 
A(7) ª 6(7 - 6) + 9π = 6 + 9π.

(e) Since f is increasing on [0,6], f ¢ is positive there. Because f ¢(x) = A¢(x),
f ¢(x) = A≤(x); thus A is concave upward for [0,6]. Similarly, the graph of 
A is concave downward for [6,12], and upward for [12,18]. There are
points of inflection on the graph of A at (6,9π) and (12,18π).

  
f

f x dx
=

( )
-

= + = +Ú0

18

18 0
18 18

18
1

p p .

  
A A6

1
4

6 9 18
1
2

6
1
2

6 6 18 182 2( ) = ( ) = ( ) = ( ) + ¥ = +p p p p, .

 
y

x
= -Ê

Ë
ˆ
¯ln 3

4
lim
x xÆ±•

-Ê
Ë

ˆ
¯ =ln ln ,3

4
3

4
3

x x x< >







0
4
3

OR .

x x x x

x x x x

> - >( ) < - <( )

> >Ê
Ë

ˆ
¯ < <Ê

Ë
ˆ
¯

0 3 4 0 0 3 4 0

0
4
3

0
4
3

 and OR  and 

 and OR  and 

,

.

3 4
0

x
x
- > .

 
3

4
0- >

x
.y

x
= -Ê

Ë
ˆ
¯ln 3

4

y
x

= -Ê
Ë

ˆ
¯ln .3

4

ey = - +4
2

3.e c0 4
2

= - + ;

e dy
x

dx

e
x

c

y

y

∫ ∫=

= − +

4

4

2

.

x e
dy
dx

y2 4=
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1   A     B     C     D     E  A     B     C     D     E

2   A     B     C     D     E  A     B     C     D     E

3   A     B     C     D     E  A     B     C     D     E

4   A     B     C     D     E  A     B     C     D     E

5   A     B     C     D     E  A     B     C     D     E

6   A     B     C     D     E  A     B     C     D     E

7   A     B     C     D     E  A     B     C     D     E

8   A     B     C     D     E  A     B     C     D     E

9   A     B     C     D     E  A     B     C     D     E

10   A     B     C     D     E  A     B     C     D     E

11   A     B     C     D     E  A     B     C     D     E

12   A     B     C     D     E  A     B     C     D     E

13   A     B     C     D     E  A     B     C     D     E

14   A     B     C     D     E  A     B     C     D     E

15   A     B     C     D     E  A     B     C     D     E

16   A     B     C     D     E  A     B     C     D     E

17   A     B     C     D     E  A     B     C     D     E

18   A     B     C     D     E  A     B     C     D     E

19   A     B     C     D     E  A     B     C     D     E

20   A     B     C     D     E  A     B     C     D     E

21   A     B     C     D     E  A     B     C     D     E

22   A     B     C     D     E  A     B     C     D     E

23   A     B     C     D     E  A     B     C     D     E

24   A     B     C     D     E  A     B     C     D     E

25   A     B     C     D     E  A     B     C     D     E

26   A     B     C     D     E  A     B     C     D     E

27   A     B     C     D     E  A     B     C     D     E

28   A     B     C     D     E  A     B     C     D     E

29   A     B     C     D     E  A     B     C     D     E

30   A     B     C     D     E  A     B     C     D     E

31   A     B     C     D     E  A     B     C     D     E

32   A     B     C     D     E  A     B     C     D     E

33   A     B     C     D     E  A     B     C     D     E

34   A     B     C     D     E  A     B     C     D     E

35   A     B     C     D     E  A     B     C     D     E

36   A     B     C     D     E  A     B     C     D     E

37   A     B     C     D     E  A     B     C     D     E

38   A     B     C     D     E  A     B     C     D     E

39   A     B     C     D     E  A     B     C     D     E

40   A     B     C     D     E  A     B     C     D     E

41   A     B     C     D     E  A     B     C     D     E

42   A     B     C     D     E  A     B     C     D     E

43   A     B     C     D     E  A     B     C     D     E

44   A     B     C     D     E  A     B     C     D     E

45   A     B     C     D     E  A     B     C     D     E

Answer Sheet
D I A G N O S T I C  T E S T  C A L C U L U S  B C

Part A

29   A     B     C     D     E  A     B     C     D     E

30   A     B     C     D     E  A     B     C     D     E

31   A     B     C     D     E  A     B     C     D     E

32   A     B     C     D     E  A     B     C     D     E

33   A     B     C     D     E  A     B     C     D     E

34   A     B     C     D     E  A     B     C     D     E

35   A     B     C     D     E  A     B     C     D     E

36   A     B     C     D     E  A     B     C     D     E

37   A     B     C     D     E  A     B     C     D     E

38   A     B     C     D     E  A     B     C     D     E

39   A     B     C     D     E  A     B     C     D     E

40   A     B     C     D     E  A     B     C     D     E

41   A     B     C     D     E  A     B     C     D     E

42   A     B     C     D     E  A     B     C     D     E

43   A     B     C     D     E  A     B     C     D     E

44   A     B     C     D     E  A     B     C     D     E

45   A     B     C     D     E  A     B     C     D     E

Part B

!
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11. is

(A) 3 (B) 1 (C) !3 (D) " (E) 0

12. is

(A) 1 (B) nonexistent (C) 0 (D) !1 (E) none of these

13. If, for all x, f ′(x) = (x – 2)4(x – 1)3, it follows that the function f has

(A) a relative minimum at x = 1
(B) a relative maximum at x = 1
(C) both a relative minimum at x = 1 and a relative maximum at x = 1
(D) neither a relative maximum nor a relative minimum
(E) relative minima at x = 1 and at x = 2

14. Let . Which of the following statements is (are) true?

I. F′(0) = 5
II. F(2) < F(6)

III. F is concave upward.

(A) I only (B) II only (C) III only
(D) I and II only (E) I and III only

F x
e

dtt

x
( ) =

+∫ 10
10

lim
cos

h

h

h→

+( )
0

2
π

lim
x

x
x x→∞

−
− −
3 4

2 7

2

2

43

Diagnostic Test Calculus BC

The use of calculators is not permitted for this part of the examination.
There are 28 questions in Part A, for which 55 minutes are allowed. To compensate
for possible guessing, the grade on this part is determined by subtracting one-fourth
of the number of wrong answers from the number answered correctly.

Directions: Choose the best answer for each question.

SECTION I 

Part A TIME:  55 MINUTES
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15. If f(x) = 10x and 101.04 ! 10.96, which is closest to f ′(1)?

(A) 0.24 (B) 0.92 (C) 0.96 (D) 10.5 (E) 24

16. If f is differentiable, we can use the line tangent to f at x = a to approximate values of
f near x = a. Suppose this method always underestimates the correct values. If so,
then at x = a, the graph of f must be

(A) positive (B) increasing (C) decreasing
(D) concave upward (E) concave downward

7. The region in the first quadrant bounded by the x-axis, the y-axis, and the curve of 
y = e!x is rotated about the x-axis. The volume of the solid obtained is equal to

(A) π (B) 2π (C) (D) (E) none of these

18. is equal to

(A) (B) ln (C) (D) (E) ln 2

9.

(A) = 0 (B) = 1 (C) = e (D) = " (E) does not exist

Questions 10 and 11. Use the table below, which shows the values of differentiable func-
tions f and g. 

10. If P(x) = g2(x), then P#(3) equals

(A) 4 (B) 6 (C) 9 (D) 12 (E) 18

11. If H(x) = f –1(x), then H#(3) equals

(A) (B) (C) (D) (E) 11
2− 1

2
− 1

8
− 1

16

lim
x

xx
→ +0

3
2

1
2

2 1In( )−2
π
4

x dx
x20

1

1+∫

π
2

1
2

x f f # g g#

1 2 !3 5

2 3 1 !0 4

3 4 2 !2 3

4 6 4 !3 1
2

1
2
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12. equals

(A) 1 (B) !1 (C) 2 ! e (D) (E) e!1

13. The curve of y = is concave upward when

(A) x $ 3 (B) 1 % x % 3 (C) x $ 1 (D) x % 1 (E) x % 3

14. As an ice block melts, the rate at which its mass, M, decreases is directly propor-
tional to the square root of the mass. Which equation describes this relationship?

(A) (B) (C)

(D) (E)

15. The length of the curve y = 2x3/2 between x = 0 and x = 1 is equal to

(A) (B) (C) (D)

(E) none of these

16. If = kx, and if x = 2 when t = 0 and x = 6 when t = 1, then k equals

(A) ln 4 (B) 8 (C) e3 (D) 3 (E) none of these

17. If y = x2 ln x (x $ 0), then y & is equal to

(A) 3 ' ln x (B) 3 ' 2 ln x (C) 3 ln x
(D) 3 ' 3 ln x (E) 2 ' x ' ln x

18. A particle moves along the curve given parametrically by x = tan t and y = 2 sin t. 

At the instant when , the particle’s speed equals

(A) (B) (C) (D) (E) none of these

19. Suppose and y = 2 when x = 0. Use Euler’s method with two steps to 

estimate y at x = 1.

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5
1
3

dy
dx

x
x y

=
+

10

17653

t = π
3

dx
dt

4
5

2
3

103 2/( )2
27

10 13 2/ −( )2
27

103 2/( )

dM
dt

k
M

=dM
dt

k M=

dM
dt

k t=M t kt( ) =M t k t( ) =

1
3

−
−

x
x

e
e

2

2
−

xe dxx
0

1
∫
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Questions 20 and 21. The graph below consists of a quarter-circle and two line segments,
and represents the velocity of an object during a 6-second interval.

20. The object’s average speed (in units/sec) during the 6-second interval is

(A) (B) (C) !1 (D) (E) 1

21. The object’s acceleration (in units/sec2) at t = 4.5 is

(A) 0 (B) –1 (C) –2 (D) (E)

22. Which of the following equations can be a solution of the differential equation 
whose slope field is shown above?

(A) 2xy = 1 (B) 2x + y = 1 (C) 2x2 + y2 = 1
(D) 2x2 - y2 = 1 (E) y = 2x2 ' 1

4 1
4

π −− 1
4

− 1
3

4 3
6

π −4 3
6

π +

4

2

2 4 5 6

–2

t (sec)

v
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23. If y is a differentiable function of x, then the slope of the curve of 
xy2 ! 2y " 4y3 = 6 at the point where y = 1 is

(A) (B) (C) (D) (E) 2

24. The graph of the pair of parametric equations x = sin t ! 2, y = cos2 t is part of

(A) a circle (B) a parabola (C) a hyperbola
(D) a line (E) a cycloid

25. is equal to

(A) 0 (B) b ! a (C) a ! b (D) (E) g(b) ! g(a)

26. The solution of the differential equation = 2xy2 for which y = –1 when x = 1 is

(A) y = – for x ≠ 0 (B) y = – for x > 0 (C) ln y2 = x2 – 1 for all x

(D) y = – for x ≠ 0 (E) y = – for x > 0

27. The base of a solid is the region bounded by the parabola y2 = 4x and the line 
x = 2. Each plane section perpendicular to the x-axis is a square. The volume of 
the solid is

(A) 6 (B) 8 (C) 10 (D) 16 (E) 32

28. Which of the following could be the graph of y = ?x
ex

2

1
x

1
x

1
2x

1
2x

dy
dx

g t dt
a

b
( )∫

g t dt g t dt
a

x

b

x
( ) ( )∫ ∫−

− 11
18

5
18

− 1
26− 1

18

(A) (B) (C) (D) (E)

END OF PART A, SECTION I

STOP
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29. When partial fractions are used, the decomposition of is equal to

(A) (B) – (C)

(D) (E)

30. The region S in the figure above is bounded by y = sec x and y = 4. What is the 
volume of the solid formed when S is rotated about the x-axis?

(A) 0.304 (B) 39.867 (C) 53.126 (D) 54.088 (E) 108.177

31. The series

. . .

converges

(A) for all real x (B) if 0 ( x % 2 (C) if 0 % x ( 2
(D) only if x = 1 (E) for all x except 0 % x % 2

x x x x−( ) − − + − − − +1 1
2

1
3

1
4

2 3 4( )
!

( )
!

( )
!

y

S

y = sec x

y = 4

x
0

−
+

−
+

2
1

3
2x x

2
1

3
2x x+

+
+

3
1

2
2x x+

−
+

2
1

3
2x x+

+
+

2
1

3
2x x+

−
+

x

x x

–1

3 22 + +

Some questions in this part of the examination require the use of a graphing 
calculator. There are 17 questions in Part B, for which 50 minutes are allowed. 
The deduction for incorrect answers on this part is the same as that for Part A. 

Directions: Choose the best answer for each question. If the exact numerical value 
of the correct answer is not listed as a choice, select the choice that is closest to the 
exact numerical answer.

Part B TIME:  50 MINUTES
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32. If f (x) is continuous at the point where x = a, which of the following statements may
be false?

(A) exists. (B) (C) exists.

(D) is defined. (E) .

33. A Maclaurin polynomial is to be used to approximate y = sin x on the interval
!π " x " π. What is the least number of terms needed to guarantee no error 
greater than 0.1?

(A) 3 (B) 4 (C) 5 (D) 6 (E) none of these

34. Find the area bounded by the y-axis and the curve defined parametrically by
x(t) = 4 – t2, y(t) = 2t.

(A) 6.328 (B) 8.916 (C) 10.667 (D) 12.190 (E) 74.529

35. Which series diverges?

(A) (B) (C) (D)

(E)

36. If x = 2t ! 1 and y = 3 ! 4t 2, then is

(A) 4t (B) !4t (C) (D) 2(x # 1) (E) !4(x # 1)

37. For the substitution x = sin θ, which integral is equivalent to ?

(A) (B) (C)

(D) (E) none of these

38. The coefficient of x3 in the Taylor series of ln (1 ! x) about x = 0 (the Maclaurin 
series) is

(A) (B) (C) (D) 0 (E)
1
3

− 1
3

− 1
2

− 2
3

cos
sin

2

0

1 θ
θ

  θ∫ d

cos
sin

/ 2

0

2 θ
θ

  θ
π

∫ dcot
/

0

2π
θ  θ∫ dcot

/π
θ  θ

4

0
∫ d

1 2

0

1 −∫ x
x

dx

− 1
4t

dy
dx

 

( )−
+=

∞

∑ 1
5 11

n

n

n
n

i

( )−
+=

∞

∑ 1
5 11

n

n n
( )−

=

∞

∑ 1
5

1

n

n n

( )−

=

∞

∑ 1
5

1

n

n n
( )−

=

∞

∑ 1
51

n

n
n

lim ( ) lim ( )
x a x a

f x f x
→ →

=
+

f a( )

′f a( )lim ( ) ( ).
x a

f x f a
→

=lim ( )
x a

f x
→
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39. The rate at which a rumor spreads across a campus of college students is given by 

, where P(T) represents the number of students who have heard

the rumor after t days. If 200 students heard the rumor today, how many will 
have heard it by midnight the day after tomorrow?

(A) 320 (B) 474 (C) 494 (D) 520 (E) 726

40. Water is poured at a constant rate into the conical reservoir shown above. If the depth
of the water, h, is graphed as a function of time, the graph is

(A) decreasing (B) constant (C) linear
(D) concave upward (E) concave downward

41. A 26-foot ladder leans against a building so that its foot moves away from the 
building at the rate of 3 feet per second. When the foot of the ladder is 10 feet from
the building, the top is moving down at the rate of r feet per second, where r is

(A) (B) (C) (D) (E)

42. If , then F′(x) = 

(A) (B) (C) (D) (E)
2

1 8 3− x
1

1 8 3− x
2

1 2 3− x
1

1 2 3− x
1

1 3− x

F x
t

dt
x

( ) =
−∫ 1

1 31

2

4
5

5
2

5
4

3
4

46
3

h

dP
dt

P= −0 16 1200. ( )

7_3679_APCalc_02DiagnosticBC  10/3/08  4:19 PM  Page 50



Diagnostic Test Calculus BC 51

Di
ag

no
st

ic
 T

es
t C

al
cu

lu
s 

BC

43. The graph above shows an object’s acceleration (in ft/sec2). It consists of a 
quarter-circle and two line segments. If the object was at rest at t = 5 seconds, 
what was its initial velocity?

(A) !2 ft/sec (B) 3 ! π ft/sec (C) 0 ft/sec
(D) π ! 3 ft/sec (E) π " 3 ft/sec

44. Water is leaking from a tank at the rate of R(t) = 5 arctan gallons per hour, 

where t is the number of hours since the leak began. How many gallons will leak 
out during the first day?

(A) 7 (B) 82 (C) 124 (D) 141 (E) 164

45. The first-quandrant area inside the rose r = 3 sin 2# is approximately

(A) 0.59 (B) 1.50 (C) 1.77 (D) 3.00 (E) 3.53

t
5( )

t
1 2

2

–2

3 4 5

a(ft/sec2)

(sec)

END OF SECTION I

STOP
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SECTION II 

Part A TIME:  45 MINUTES

3 PROBLEMS

A graphing calculator is required for some of these problems. 
See instructions on page 4.

1. (a) For what positive values of x does converge?

(b) How many terms are needed to estimate f (0.5) to within 0.01?

(c) Would an estimate for f (-0.5) using the same number of terms be more accurate, 
less accurate, or the same? Explain.

2. An object in motion along the x-axis has velocity n(t) = (t + et)sin t2 for 1 ≤ t ≤ 3.

(a) Sketch the graph of velocity as a function of time in the window 
[1,3] ¥ [!15,20].

(b) When is the object moving to the left?

(c) Give one value of t from the interval in part (b) at which the speed of the 
object is increasing.

(d) At t = 1 this object’s position was x = 10. Where is the object when t = 3?

 
f x

x
n

n
n

n

( )
ln

= -( )
+( )

+

=

•

Â 1
1

1

1
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Note: Scales are different on the three figures.

3. The sides of a watering trough are made by folding a sheet of metal 24 inches wide
and 5 feet long at an angle of 60°, as shown in the figure above. Ends are added, and
then the trough is filled with water.

(a) If water pours into the trough at the rate of 600 cubic inches per minute, how fast
is the water level rising when the water is 4 inches deep?

(b) Is this the biggest trough that can be made from these materials? Suppose, 
instead, the sheet of metal is folded twice, keeping the sides of equal height 
and inclined at an angle of 60°, as shown. Where should the folds be in order to
maximize the volume of the trough? Justify your answer. 

24"

5'  

5'

12"
12"

60°

60°

END OF PART A, SECTION II

STOP
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Part B TIME:  45 MINUTES

3 PROBLEMS

No calculator is allowed for any of these problems.
If you finish Part B before time has expired, you may return to work on Part A, but you
may not use a calculator.

4. Let f be the function satisfying the differential equation and 

passing through (0,–1).

(a) Sketch the slope field for this differential equation at the points shown.

(b) Use Euler’s method with a step size of 0.5 to estimate f(1).

(c) Solve the differential equation, expressing f as a function of x.

5. Let C represent the arc of the curve determined by P(t) = (9 – t2,2t ) between its 
y-intercepts. Let R represent the region bounded by C and the y-axis. Set up, but do 
not evaluate, an integral in terms of a single variable for:

(a) the area of R;

(b) the length of C;

(c) the volume of the solid generated when R is rotated around the y-axis.

(–1,1)

(–1,0)

(–1,–1)

(0,1)

(0,0)

(0,–1)

(1,1)

(1,0)

(1,–1)

y

x

dy
dx

x y= +( )2 12
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END OF TEST

STOP

6. The graph of function f consists of the semicircle and line segment shown in the 

figure. Define the area function for 0 ≤ x ≤ 18.

(a) Find A(6) and A(18).

(b) What is the average value of f on the interval 0 ≤ x ≤ 18?

(c) Write the equation of the line tangent to the graph of A at x = 6. 

(d) Use this line to estimate the area between f and the x-axis on [0,7].

(e) Give the coordinates of any points of inflection on the graph of A. 
Justify your answer.

6

0 6

f
(18,6)

12 18

  
A x f t dt

x

( ) = ( )"
0
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Answer Key
D I A G N O S T I C  T E S T  C A L C U L U S  B C

NOTE: Chapters that review and offer additional practice for each topic are specified in parentheses.

11. C (2)
12. D (3)
13. A (4)
14. D (6)
15. E (3)
16. D (4)
17. D (3)

18. B (5)
19. B (3)
10. D (3)
11. E (3)
12. A (5)
13. E (4)
14. D (9)

15. B (7)
16. E (9)
17. B (3)
18. D (8)
19. C (9)
20. A (6)
21. C (6)

22. D (9)
23. A (3)
24. B (1)
25. D (6)
26. B (9)
27. E (7)
28. C (2)

29. B (5)
30. E (7)
31. A (10)
32. C (2)
33. B (10)

34. B (7)
35. E (10)
36. B (3)
37. C (6)

38. C (10)
39. B (9)
40. E (4)
41. C (4)

42. E (6)
43. D (6)
44. C (8)
45. E (7)

Part A

Part B
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ANSWERS EXPLAINED
The explanations for questions not given below will be found in the answer section 
for Calculus AB Diagnostic Exam on pages 30–36. Identical questions in Section I of
Practice Examinations AB1 and BC1 have the same number. For example, explanations
of the answers for Questions 1–6, not given below, will be found in Section I of Calculus
AB Diagnostic Exam Answers 1–6, page 30.

Multiple-Choice

Part A
7. (D) The volume is given by , an improper integral.

9. (B) Let y = xx and take logarithms. . As x Æ 0!, this 

function has the indeterminate form "/". Apply L’Hôpital’s rule:

So y Æ e0 or 1.

12. (A) Use the Parts Formula with u = x and dv = ex dx. Then du = dx and v = ex, and

15. (B) The arc length is given by the integral which is 

16. (E) Separating variables yields . Integrating gives ln x = kt ! C. Since 

x = 2 when t = 0, ln 2 = C. Then ln x = kt + ln 2. Using x = 6 when t = 1, it 

follows that .ln ln , ln ln ln6 2 6 2
6
2

= + = − =k kso

dx
x

k dt=
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17. (B) y! = x " 2x ln x and .

18. (D) .

19. (C) At (0, 2), . With step size , the first step gives , 

where ; so the next step produces .

24. (B) Since x " 2 = sin t and y = cos2 t, then

(x " 2)2 " y = 1,

where # 3 $ x $ # 1 and 0 $ y $ 1.

Part B
29. (B) Set

30. (E) S is the region bounded by y = sec x, the y-axis, and y = 4.

x

y

0

(x,4)

(x,y)

R

r

x
x x

x
x x

A
x

B
x

x A x

−
+ +

= −
+( ) +( ) = + + +

− = +( )

1
3 2

1
1 2 1 2

1 2

2 .

+
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B x
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x
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= −

1

2 3 3

1
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, ;

ss or− = = −2 2A A, .

1 2
1
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2, + ( )





dy
dx

= =5

2
1
2
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1
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π
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We send region S about the x-axis. Using washers, )V = p(R2 ! r2) )x.
Symmetry allows us to double the volume generated by the first-quadrant
portion of S. So for V we have

.

A calculator yields 108.177.

31. (A) Use the Ratio Test, page 415:

,

which equals zero if x ≠ 1. The series also converges if x = 1 (each term
equals 0).

32. (C) The absolute value function f(x) = |x | is continuous at x = 0, but f ′(0) does
not exist.

33. (B) The Maclaurin series is

...

When an alternating series satisfies the Altering Series Test, the sum is 
approximated by using a finite number of terms, and the error is less than 
the first term omitted. On the interval !π ( x ( π, the maximum error 
(numerically) occurs when x = π. Since

four terms will suffice to assure no error greater than 0.1.

34. (B)

Graph x = 4 – t2 and y = 2t for –3 ≤ t ≤ 3 in the window [–1, 5] * [–1, 5].
Now )A = x)y; the limits of integration are the two points where the 
curve cuts the y-axis, that is, where x = 0. In terms of t, these are t1 = !2 
and t2 = '2. So

 
A x dy t dt

t t

t t t= = −( )=

=

−∫ ∫
1

2 4 2 2 8 9162
2

2
ln . .!

D A

x

(0,4) when t2 = 2

x

y

(0,_) when t1 = 2
1

4

π π7 9

7
0 6

9
0 09

!
.

!
. ,< <and

sin
! ! ! !

x x
x x x x= − + − + −

3 5 7 9

3 5 7 9

lim
!

!
lim

n

n

n n

x
n

n

x n
x

→∞

+

→∞

−( )
+( ) −( )

=
+

1
1 1

1
1

1

i −− 1

2 16 2
0

1
4

π −( )∫ sec
cos

x dx
arc

7_3679_APCalc_02DiagnosticBC  10/3/08  4:19 PM  Page 59



60 AP Calculus
Di

ag
no

st
ic

 T
es

t C
al

cu
lu

s 
BC

35. (E) .

36. (B) = 2 and = –8t. Hence 

37. (C) , dx = cos + d+, sin!1 0 = 0, sin-11 = .

38. (C) The power series for ln (1 ! x), if x % 1, is . . .

39. (B) Solve by separation of variables; then

Use P(0) = 200; then c = 1000, so P(x) = 1200 ! 1000e!0.16t. Now P(2) = 473.85.

40. (E) As the water gets deeper, the depth increases more slowly. Hence, the rate of
change of depth decreases: d2h/dt2 < 0.

45. (E) The first quadrant area is .
1
2

3 2 3 532

0
2 sin .θ θ
π

( ) ≈∫ d

 1200 0 16- = -P ce t. .
 - -( ) = +ln . ,1200 0 16P t C

dP
P

dt
1200

0 16
-

= . ,

− − − −x
x x2 3

2 3

π
2

1 2− =sin cosθ θ

dy
dx

dy dt
dx dt

t= = −/
/

.
8
2

dy
dt

dx
dt

lim
n

n
n→∞ +

= ≠
5 1

1
5

0
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Free-Response

Part A
1. (a) Use the Ratio Test:

The radius of convergence is 1. At the endpoint x = 1,

Since 

and

this series converges by the Alternating Series Test. Thus

converges for positive values 0 < x £ 1.

(b) Because satisfies the Alternating Series Test, the error 

in approximation after n terms is less than the magnitude of the next term. The 

calculator shows that at n = 5 terms.

(c) is a negative series. Therefore the  

error will be larger than the magnitude of the first omitted term, and thus less accu-
rate than the estimate for f(0.5).

2. See solution for AB-2, page 37.

3. See solution for AB-3, pages 38–39.
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Part B
4. (a) Using the differential equation, evaluate the derivative at each point, then sketch a 

short segment having that slope. For example, at (-1, -1), = -4;

draw a segment at (-1, -1) that decreases steeply. Repeat this process at each of
the other points.  The result is shown below.

(b) At (0, -1), = 0. For Dx = 0.5 and Dy = 0, so move 

to (0 + 0.5, -1 + 0) = (0.5, -1).

At (0.5, -1), = 2. Thus, for Dx = 0.5 and = 2, Dy = 1. 

Move to (0.5 + 0.5, -1 + 1) = (1, 0), then f(1) ª 0.

(c) The differential equation = 2x (y2 + 1) is separable:

= 

arctan(y) = x2 + c
y = tan (x2 + c)

It is given that f passes through (0,–1), so –1 = tan (02 + c) and c = – .

The solution is f(x) = tan .x2

4
−





π

π
4

2x dx∫dy

y2 1+∫

dy
dx

∆
∆

y
x

dy
dx

= ( ) −( ) +( )2 0 5 1 12.

 
D
D

y
x

= 0,dy
dx

= ( ) −( ) +( )2 0 1 12

dy
dx

= −( ) −( ) +( )2 1 1 12
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5. (a) To find the y-intercepts of the graph of P(t) = (9 – t2,2t), let x = 9 – t2 = 0, and 

solve: t = -3, 3.  Then P(-3) = and P(3) = (0, 8).

Draw a horizontal element of area as shown in the graph. Then:

∆A = x ∆y,

A = = .

(b) L = dt = dt.

(c) Use disks. Then ∆V = πx2 ∆y, 

V = .

6. See solution for AB-6, page 40.

π 9 2 22 2

3

3
−( ) ( )−∫ t dtt ln
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−∫ 2 2 22 2

3

3
t t lndx

dt
dy
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2 2

9 2 22

3

3
−( ) ( )

−∫ t dtt lnx dy∫

 
0

1
8

,Ê
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ˆ
¯
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A. DEFINITIONS
A1. A function f is a correspondence that associates with each element a of a set

called the domain one and only one element b of a set called the range. We write 
f (a) = b

to indicate that b is the value of f at a. The elements in the domain are called inputs, and
those in the range are called outputs.

A function is often represented by an equation, a graph, or a table.
A vertical line cuts the graph of a function in at most one point.

EXAMPLE 1
The domain of f(x) = x2 – 2 is the set of all real numbers; its range is the set of all
reals greater than or equal to –2. Note that

f(0) = 02 – 2 = –2,    f(–1) = (–1)2 – 2 = –1,
f( ) = ( )2 – 2 = 1,    f(c) = c2 – 2,
f(x + h) – f(x) = [(x + h)2 –2] – [x2 – 2]

= x2 + 2hx + h2 – 2 – x2 + 2 = 2hx + h2.

EXAMPLE 2
The domain of f(x) = is the set of all reals except x = 1 (which we shorten 
to “x | 1”).

The domain of g(x) = is x | 3, –3.

The domain of h(x) = is x ! 4, x | 0 (which is a short way of

writing {x ! x is real, x < 0 or 0 < x ! 4}).

4  – x
x

x
x2 9  –

4
1x  −

33

67

Functions CHAPTER1
Concepts and Skills
In this chapter you will review precalculus topics. Although these topics are not 
directly tested on the AP exam, reviewing them will reinforce some basic principles:

• general properties of functions: domain, range, composition, inverse;
• special functions: absolute value, greatest integer; polynomial, rational, 

trigonometric, exponential, and logarithmic;

and the BC topic,

• parametrically defined curves

Function

Domain 

Range
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A2. Two functions f and g with the same domain may be combined to yield their
sum and difference: f(x) + g(x) and f(x) – g(x),

also written as ( f + g) (x) and ( f – g) (x), respectively;

or their product and quotient: f(x)g(x) and f(x)/g(x),

also written as ( fg)(x) and ( f/g) (x), respectively.

The quotient is defined for all x in the shared domain except those values for which g(x),
the denominator, equals zero.

EXAMPLE 3
If f(x) = x2 – 4x and g(x) = x + 1, then

and has domain x | –1;

and has domain x | 0, 4.

A3. The composition (or composite) of f with g, written as f(g(x)) and read as “f of
g of x,” is the function obtained by replacing x wherever it occurs in f(x) by g(x). We also
write (f ° g) (x) for f(g(x)). The domain of ( f ° g) (x) is the set of all x in the domain of g
for which g(x) is in the domain of f.

EXAMPLE 4A
If f(x) = 2x – 1 and g(x) = x2, then

f(g(x)) = 2(x2) – 1 = 2x2 – 1;

but

g(f(x)) = (2x – 1)2 = 4x2 – 4x + 1.

In general, f(g(x)) | g(f(x)).

EXAMPLE 4B

If f(x) = 4x2 – 1 and g(x) = , then

f(g(x)) = 4x – 1 (x v 0);

whereas

g(f(x)) = (!x! v ).

A4. A function f is if, for all x in the domain of f, .

The graph of an odd function is symmetric about the origin; the graph of an even func-
tion is symmetric about the y-axis.

f x f x
f x f x

(– ) ( )
(– ) – ( )

=
=

even
odd

1
2

4 12x −

x

g x
f x

x
x x

x
x x

( )
( ) – ( – )

= + = +1
4

1
42

f x
g x

x x
x

( )
( )

–=
+

2 4
1

68 AP Calculus
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Symmetry
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1

1 2 30

0

x

y y

1 2 3 4– 4 – 3 –2

–2

–1

–1

x

1

2

3

4
f (x) =  1

 
x3

2

f (x) is odd

f (–x) =  1
 
(–x)3 = –f (x)

g(x) = 3x2 – 1

g(x) is even
g(–x) = 3(–x)2 –1 = 3x2 – 1 = g(x)

2

EXAMPLE 5

The graphs of f(x) = x3 and g(x) = 3x2 – 1 are shown in Figure N1–1; f(x) is
odd, g(x) even.

FIGURE N1–1

A5. If a function f yields a single output for each input and also yields a single
input for every output, then f is said to be one-to-one. Geometrically, this means that any
horizontal line cuts the graph of f in at most one point. The function sketched at the left
in Figure N1–1 is one-to-one; the function sketched at the right is not. A function that is
increasing (or decreasing) on an interval I is one-to-one on that interval (see pages
162–163 for definitions of increasing and decreasing functions).

A6. If f is one-to-one with domain X and range Y, then there is a function f –1, with
domain Y and range X, such that

f –1 (y0) = x0 if and only if f(x0) = y0.

The function f –1 is the inverse of f. It can be shown that f –1 is also one-to-one and that its
inverse is f. The graphs of a function and its inverse are symmetric with respect to the
line y = x.

To find the inverse of y = f(x),
solve for x in terms of y,
then interchange x and y.

EXAMPLE 6
Find the inverse of the one-to-one function f(x) = x3 – 1.

Solve the equation for x: x = .

Interchange x and y: y = .x f x+ =13 1– ( )

y + 13

1
2

Functions 69

Inverse

7_3679_APCalc_03Chapter1  10/3/08  4:20 PM  Page 69



Absolute-value function Greatest-integer function

1

1

0 0
x x

y

g(x) = [x] is the
greatest integer

not greater than x

f (x) =  x  =
x if x " 0

–x if x < 0

y

1

1

FIGURE N1–2

Note that the graphs of f and f–1 in Figure N1–2 are mirror images, with the line y = x as
the mirror.

A7. The zeros of a function f are the values of x for which f(x) = 0; they are the 
x-intercepts of the graph of y = f(x).

EXAMPLE 7
The zeros of f(x) = x 4 – 2x2 are the x’s for which x 4 – 2x2 = 0. The function has
three zeros, since x4 – 2x2 = x2(x 2 – 2) equals zero if x = 0, , or .

B. SPECIAL FUNCTIONS
The absolute-value function f (x) = !x! and the greatest-integer function g(x) = [x] are
sketched in Figure N1–3.

FIGURE N1–3

– 2+ 2

y

x

y = x

y = f (x) = x3 – 1

y = f –1(x) =   x + 1

1

1

3

70 AP Calculus

Zeros

Absolute
value

Greatest 
integer
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EXAMPLE 8
A function f is defined on the interval [–2, 2] and has the graph shown in Figure
N1-4.

FIGURE N1–4

(a) Sketch the graph of y = ! f(x)!.
(b) Sketch the graph of y = f(!x!).
(c) Sketch the graph of y = –f (x).
(d) Sketch the graph of y = f(–x).

The graphs are shown in Figures N1–4a through N1–4d.

FIGURE N1–4a FIGURE N1–4b

y = f (  x  )

–2 –1 1

1

20

y

x

y =  f (x)

–2 –1 1

1

2

2

0

y

x

y

y = f (x)–1

–2

–2 –1 1

1

20
x

Functions 71
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FIGURE N1–4c FIGURE N1–4d

Note that graph (c) of y = –f(x) is the reflection of y = f (x) in the x-axis, whereas
graph (d) of y = f (–x) is the reflection of y = f (x) in the y-axis. How do the graphs of
!f (x)! and f (!x!) compare with the graph of f(x)?

EXAMPLE 9
Let f (x) = x3 – 3x2 + 2. Graph the following functions on your calculator in the
window [–3,3] ¥ [–3,3]:

(a) y = f (x) (b) y = !f (x)! (c) y = f(!x!)

(a) y = f (x)
See Figure N1–5a.

FIGURE N1–5a

(b) y = !f (x)!
See Figure N1–5b.

FIGURE N1–5b

y = –f (x)

–2 –1 1

1

–1

2

2

0

y

x

y = f (–x)

–2

–2

–1

–1

1

1

20

y
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(c) y = f(!x!)
See Figure N1–5c.

FIGURE N1–5c

Note how the graphs for (b) and (c) compare with the graph for (a).

C. POLYNOMIAL AND OTHER RATIONAL FUNCTIONS

C1. Polynomial Functions.
A polynomial function is of the form

f (x) = a0xn + a1xn–1 + a2xn–2 + . . . + an–1x + an,

where n is a positive integer or zero, and the a’s, the coefficients, are constants. If a0 | 0,
the degree of the polynomial is n.

A linear function, f (x) = mx + b, is of the first degree; its graph is a straight line
with slope m, the constant rate of change of f (x) (or y) with respect to x, and b is the
line’s y-intercept.

A quadratic function, f (x) = ax2 + bx + c, has degree 2; its graph is a parabola that 
opens up if a > 0, down if a < 0, and whose axis is the line x = 

A cubic, f(x) = a0x3 + a1x2 + a2x + a3, has degree 3; calculus enables us to sketch its
graph easily; and so on. The domain of every polynomial is the set of all reals.

C2. Rational Functions.
A rational function is of the form

f (x) = ,

where P(x) and Q(x) are polynomials. The domain of f is the set of all reals for which
Q(x) | 0.

D. TRIGONOMETRIC FUNCTIONS
The fundamental trigonometric identities, graphs, and reduction formulas are given in the
Appendix.

P x
Q x

( )
( )

– .b
a2

Polynomial

Rational
function
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D1. Periodicity and Amplitude.
The trigonometric functions are periodic. A function f is periodic if there is a positive
number p such that f (x + p) = f(x) for each x in the domain of f. The smallest such p is
called the period of f. The graph of f repeats every p units along the x-axis. The functions
sin x, cos x, csc x, and sec x have period 2U; tan x and cot x have period U.

The function f (x) = A sin bx has amplitude A and period ; g(x) = tan cx has 
period .

EXAMPLE 10

(a) For what value of k does f (x) = cos kx have period 2? 
(b) What is the amplitude of f for this k?

(a) Function f has period ; since this must equal 2, we solve the equation

= 2, getting k = U.

(b) It follows that the amplitude of f that equals has a value of .

EXAMPLE 11

Find (a) the period and (b) the maximum value of f (x) = 3 – sin . (c) What is
the smallest positive x for which f is a maximum? (d) Sketch 
the graph. 

(a) The period of f is 2U ÷ , or 6.

(b) Since the maximum value of –sin x is –(–1) or +1, the maximum value of f is
3 + 1 or 4.

(c) – equals +1 when sin = –1, that is, when = . Solving yields 

x = .

(d) We graph y = 3 – sin in [–5,8] ¥ [0,5]:

FIGURE N1–6

period

–4 –3 –2 –1 1 2 3 4 5 6

     (   ,4)9
2

4
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D2. Inverses.
We obtain inverses of the trigonometric functions by limiting the domains of the latter so each
trigonometric function is one-to-one over its restricted domain. For example, we restrict

sin x to ,

cos x to      0 ! x ! U,

tan x to   .

The graphs of f(x) = sin x on and of its inverse f –1(x) = sin–1x are shown in Figure 
N1–7. The inverse trigonometric function sin–1x is also commonly denoted by arcsin x,
which denotes the angle whose sine is x. The graph of sin–1x is, of course, the reflection
of the graph of sin x in the line y = x.

FIGURE N1–7

Also, for other inverse trigonometric functions,

y = cos–1 x (or arccos x) has domain –1 ! x ! 1 and range 0 ! y ! U;

y = tan–1 x (or arctan x) has domain the set of reals and range .

Note also that

sec–1(x) = cos–1 , csc–1(x) = sin–1 , and cot–1(x) = – tan–1(x).π
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π
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π
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E. EXPONENTIAL AND LOGARITHMIC FUNCTIONS

E1. Exponential Functions.
The following laws of exponents hold for all rational m and n, provided that a > 0, a | 1:

a0 = 1; a1 = a; am · an = am + n; am ÷ an = am – n;

(am)n = amn; a–m = .

The exponential function f(x) = ax (a > 0, a | 1) is thus defined for all real x; its domain
is the set of positive reals. The graph of y = ax, when a = 2, is shown in Figure N1–8.

Of special interest and importance in the calculus is the exponential function 
f(x) = ex, where e is an irrational number whose decimal approximation to five decimal
places is 2.71828. We define e on page 97.

E2. Logarithmic Functions.
Since f(x) = ax is one-to-one, it has an inverse, f –1(x) = loga x, called the logarithmic func-
tion with base a. We note that

y = loga x if and only if ay = x.

The domain of loga x is the set of positive reals; its range is the set of all reals. It follows
that the graphs of the pair of mutually inverse functions y = 2x and y = log2x are symmetric
to the line y = x, as can be seen in Figure N1–8.

FIGURE N1–8

The logarithmic function loga x (a > 0, a | 1) has the following properties:

loga 1 = 0; loga a = 1; loga mn = loga m + loga n;

loga = loga m – loga n; loga xm = m loga x.m
n

y
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The logarithmic base e is so important and convenient in calculus that we use a spe-
cial symbol:

loge x = ln x.

Logarithms with base e are called natural logarithms. The domain of ln x is the set of
positive reals; its range is the set of all reals. The graphs of the mutually inverse func-
tions ln x and ex are given in the Appendix.

F. PARAMETRICALLY DEFINED FUNCTIONS
If the x- and y-coordinates of a point on a graph are given as functions f and g of a third
variable, say t, then

x = f(t), y = g(t)

are called parametric equations and t is called the parameter. When t represents time, as
it often does, then we can view the curve as that followed by a moving particle as the
time varies.

EXAMPLE 12
From the parametric equations

x = 4 sin t, y = 5 cos t (0 ! t ! 2U)

we can find the Cartesian equation of the curve by eliminating the parameter t as
follows:

sin t = , cos t = .

Since sin2 t + cos2 t = 1, we have

The curve is the ellipse shown in Figure N1–9.

FIGURE N1–9

Note that, as t increases from 0 to 2U, a particle moving in accordance with the
given parametric equations starts at point (0, 5) (when t = 0) and travels in a
clockwise direction along the ellipse, returning to (0, 5) when t = 2U.
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EXAMPLE 13
For the pair of parametric equations

x = 1 – t, y = (t " 0)

we can eliminate t by squaring the second equation and substituting for t in the
first; then we have

y2 = t and x = 1 – y2.

We see the graph of the equation x = 1 – y2 on the left in Figure N1–10. At the
right we see only the upper part of this graph, the part defined by the parametric
equations for which t and y are both restricted to nonnegative numbers.

FIGURE N1–10

The function defined by the parametric equations here is y = F(x) = ,
whose graph is at the right above; its domain is x ! 1 and its range is the
set of nonnegative reals.

EXAMPLE 14
A satellite is in orbit around a planet that is orbiting around a star. The satellite
makes 12 orbits each year. Its path is given by the parametric equations

x = 4 cos t + cos 12t,
y = 4 sin t + sin 12t.

Shown below is the graph of the satellite’s path in [–7,7] × [–5,5]. We used the
calculator’s parametric mode for 0 ≤ t ≤ 2U.

FIGURE N1–11
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EXAMPLE 15
Graph x = y2 – 6y + 8.

We encounter a difficulty here. The calculator is constructed to graph y as a
function of x: it accomplishes this by scanning horizontally across the window
and plotting points in varying vertical positions. Ideally, we want the calculator
to scan down the window and plot points at appropriate horizontal positions. But
it won’t do that.

One alternative is to interchange variables, entering x as Y1 and y as X, thus
entering Y1 = X2 – 6X + 8. But then, during all subsequent processing we must
remember that we have made this interchange.

Less risky and more satisfying is to switch to parametric mode: Enter 
x = t 2 – 6t + 8 and y = t. Then graph these equations in [–10,10] ¥ [–10,10], for t in
[–10,10]. See Figure N1–12.

FIGURE N1–12

EXAMPLE 16
Let f(x) = x3 + x; graph f –1(x).
Recalling that f –1 interchanges x and y, we use parametric mode to graph

f : x = t, y = t3 + t
and f –1: x = t3 + t, y = t.

Figure N1-13 shows both f(x) and f –1(x).

FIGURE N1–13

Parametric equations give rise to vector functions, which will be discussed in con-
nection with motion along a curve in Chapter 4.

f –1

f –1

f

f
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Chapter Summary
This chapter has reviewed some important precalculus topics. These topics are not 
directly tested on the AP exam; rather, they represent basic principles important in calcu-
lus. These include finding the domain, range and inverse of a function; and understand-
ing the properties of polynomial and rational functions, trigonometric and inverse trig
functions, and exponential and logarithmic functions. 

For BC students, this chapter also reviewed parametrically defined functions.

Practice Exercises

Directions: Answer these questions without using your calculator.

1. If f(x) = x3 – 2x – 1, then f(–2) =

(A) –17 (B) –13 (C) –5 (D) –1 (E) 3

2. The domain of f(x) = is

(A) all x | 1 (B) all x | 1, –1 (C) all x | –1
(D) x " 1 (E) all reals

3. The domain of g(x) = is

(A) all x | 0, 1 (B) x ! 2, x | 0, 1 (C) x ! 2
(D) x " 2 (E) x > 2

4. If f(x) = x3 – 3x2 – 2x + 5 and g(x) = 2, then g( f(x)) =

(A) 2x3 – 6x2 – 2x + 10 (B) 2x2 – 6x + 1 (C) –6
(D) –3 (E) 2

5. With the functions and choices as in Question 4, which choice is correct for f(g(x))?

6. If f(x) = x3 + Ax2 + Bx – 3 and if f(1) = 4 and f(–1) = –6, what is the value of 2A + B?

(A) 12 (B) 8 (C) 0 (D) –2
(E) It cannot be determined from the given information.

7. Which of the following equations has a graph that is symmetric with respect to the
origin?

(A) y = (B) y = 2x4 + 1 (C) y = x3 + 2x

(D) y = x3 + 2 (E) y = 

8. Let g be a function defined for all reals. Which of the following conditions is not
sufficient to guarantee that g has an inverse function?

(A) g(x) = ax + b, a | 0. (B) g is strictly decreasing.
(C) g is symmetric to the origin. (D) g is strictly increasing.
(E) g is one-to-one.

x
x3 1+

x
x
–1

x
x x

−
−

2
2

x
x

−
+

1
12
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9. Let y = f(x) = sin (arctan x). Then the range of f is

(A) {y ! 0 < y ! 1} (B) {y ! –1 < y < 1} (C) {y ! –1 ! y ! 1}

(D) (E)

10. Let g(x) = !cos x – 1!. The maximum value attained by g on the closed interval 
[0, 2U] is for x equal to

(A) –1 (B) 0 (C) (D) 2 (E) U

11. Which of the following functions is not odd?

(A) f(x) = sin x (B) f(x) = sin 2x (C) f(x) = x3 + 1

(D) f(x) = (E) f(x) = 

12. The roots of the equation f(x) = 0 are 1 and –2. The roots of f(2x) = 0 are

(A) 1 and –2 (B) and –1 (C) – and 1

(D) 2 and –4 (E) –2 and 4

13. The set of zeros of f(x) = x3 + 4x2 + 4x is

(A) {–2} (B) {0, –2} (C) {0, 2} (D) {2} (E) {2, –2}

14. The values of x for which the graphs of y = x + 2 and y2 = 4x intersect are

(A) –2 and 2 (B) –2 (C) 2 (D) 0 (E) none of these

15. The function whose graph is a reflection in the y-axis of the graph of f(x) = 1 – 3x is

(A) g(x) = 1 – 3–x (B) g(x) = 1 + 3x (C) g(x) = 3x – 1
(D) g(x) = log3 (x – 1) (E) g(x) = log3 (1 – x)

16. Let f(x) have an inverse function g(x). Then f(g(x)) =

(A) 1 (B) x (C) (D) f(x) · g(x) (E) none of these

17. The function f(x) = 2x3 + x – 5 has exactly one real zero. It is between

(A) –2 and –1 (B) –1 and 0 (C) 0 and 1
(D) 1 and 2 (E) 2 and 3

1
x

1
2

1
2

23 xx
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π
2
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2 2
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18. The period of f(x) = sin x is

(A) (B) (C) (D) 3 (E) 6

19. The range of y = f(x) = ln (cos x) is

(A) {y ! – h < y ! 0} (B) {y ! 0 < y ! 1} (C) {y ! –1 < y < 1}

(D) (E) {y ! 0 ! y ! 1}

20. If logb (3b) = , then b =

(A) (B) (C) (D) 3 (E) 9

21. Let f –1 be the inverse function of f(x) = x3 + 2. Then f –1(x) =

(A) (B) (x + 2)3 (C) (x – 2)3

(D) (E)

22. The set of x-intercepts of the graph of f(x) = x3 – 2x2 – x + 2 is

(A) {1} (B) {–1, 1} (C) {1, 2}
(D) {–1, 1, 2} (E) {–1, –2, 2}

23. If the domain of f is restricted to the open interval , then the range of 
f(x) = etan x is

(A) the set of all reals (B) the set of positive reals
(C) the set of nonnegative reals (D) {y ! 0 < y ! 1}
(E) none of these

24. Which of the following is a reflection of the graph of y = f(x) in the x-axis?

(A) y = –f(x) (B) y = f(–x) (C) y = ! f(x)!
(D) y = f(!x!) (E) y = –f(–x)

25. The smallest positive x for which the function f(x) = sin – 1 is a maximum is

(A) (B) U (C) (D) 3U (E) 6U3
2
ππ
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x
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26. tan =

(A) –1 (B) – (C) – (D) (E) 1

27. If f –1(x) is the inverse of f(x) = 2e–x, then f –1(x) =

(A) ln (B) ln (C) ln x

(D) (E) ln (2 – x)

28. Which of the following functions does not have an inverse function?

(A) y = sin x (B) y = x3 + 2 (C) y = 

(D) y = (E) y = ln (x – 2)  (where x > 2)

29. Suppose that f(x) = ln x for all positive x and g(x) = 9 – x2 for all real x. The domain
of f(g(x)) is

(A) {x ! x ! 3} (B) {x ! !x! ! 3} (C) {x ! !x! > 3}
(D) {x ! !x! < 3} (E) {x ! 0 < x < 3}

30. Suppose (as in Question 29) that f(x) = ln x for all positive x and g(x) = 9 – x2 for all
real x. The range of y = f(g(x)) is

(A) {y ! y > 0} (B) {y ! 0 < y ! ln 9} (C) {y ! y ! ln 9}
(D) {y ! y < 0} (E) none of these

31. The curve defined parametrically by x(t) = t 2 + 3 and y(t) = t 2 + 4 is part of a(n)

(A) line (B) circle (C) parabola
(D) ellipse (E) hyperbola

32. Which equation includes the curve defined parametrically by x(t) = cos2 (t) and 
y(t) = 2 sin (t)?

(A) x2 + y2 = 4 (B) x2 + y2 = 1 (C) 4x2 + y2 = 4
(D) 4x + y2 = 4 (E) x + 4y2 = 1

1
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ex
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Answer Key

Answers Explained
1. (C) f(–2) = (–2)3 – 2(–2) – 1 = –5.

2. (E) The denominator, x2 + 1, is never 0.

3. (D) Since x – 2 may not be negative, x " 2. The denominator equals 0 at x = 0
and x = 1, but these values are not in the interval x # 2.

4. (E) Since g(x) = 2, g is a constant function. Thus, for all f(x), g( f(x)) = 2.

5. (D) f(g(x)) = f(2) = –3.

6. (B) Solve the pair of equations

Add to get A; substitute in either equation to get B. A = 2 and B = 4.

7. (C) The graph of f(x) is symmetrical to the origin if f(–x) = –f(x). In (C), 
f(–x) = (–x)3 + 2(–x) = –x3 – 2x = –(x3 + 2x) = –f (x).

8. (C) For g to have an inverse function it must be one-to-one. Note, on page 338,
that although the graph of y = xe–x2

is symmetric to the origin, it is not 
one-to-one.

9. (B) Note that < arctan x < ; the sine function varies from –1 to 1 

as the argument  varies from to .

10. (E) The maximum value of g is 2, attained when cos x = –1. On [0,2U], 
cos x = –1 for x = U.

11. (C) f is odd if f(–x) = –f(x). In (C), f (–x) = (–x)3 + 1 = –x3 + 1 ≠ –f (x)

12. (B) Since f(q) = 0 if q = 1 or q = –2, f(2x) = 0 if 2x, a replacement for q, equals
1 or –2.

13. (B) f(x) = x(x2 + 4x + 4) = x(x + 2)2; f(x) = 0 for x = 0 and x = –2.

14. (E) Solving simultaneously yields (x + 2)2 = 4x; x2 + 4x + 4 = 4x; x2 + 4 = 0.
There are no real solutions.

15. (A) The reflection of y = f(x) in the y-axis is y = f(–x).

16. (B) If g is the inverse of f, then f is the inverse of g. This implies that the func-
tion f assigns to each value g(x) the number x.

π
2− π

2

π
2− π

2

    4 1 3

6 1 3

= + + −
= − + − −









A B

A B–
.

1. C
2. E
3. D
4. E
5. D
6. B
7. C
8. C

9. B
10. E
11. C
12. B
13. B
14. E
15. A
16. B

17. D
18. D
19. A
20. E
21. E
22. D
23. B
24. A

25. C
26. A
27. A
28. C
29. D
30. C
31. A
32. D
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17. (D) Since f is continuous (see page 101), then, if f is negative at a and positive
at b, f must equal 0 at some intermediate point. Since f(1) = –2 and f(2) =
13, this point is between 1 and 2.

18. (D) The function sin bx has period . Then 2π ÷ = 3.

19. (A) Since ln q is defined only if q > 0, the domain of ln cos x is the set of x for
which cos x > 0, that is, when 0 < cos x ! 1. Thus – h < ln cos x ! 0.

20. (E) logb 3b = implies b logb 3 = . Then logb 3 = and 3 = b1/2. So 32 = b.

21. (E) Letting y = f(x) = x3 + 2, we get

x3 = y – 2, x = = f –1(y).

So f –1(x) = .

22. (D) Since f(1) = 0, x – 1 is a factor of f. Since f(x) divided by x – 1 yields 
x2 – x – 2, f(x) = (x – 1) (x + 1) (x – 2); the roots are x = 1, –1, and 2.

23. (B) If – < x < , then –h < tan x < h and 0 < etan x < h.

24. (A) The reflection of f(x) in the x-axis is –f(x).

25. (C) f(x) attains its maximum when sin does. The maximum value of the 

sine function is 1; the smallest positive occurrence is at . Set equal to .

26. (A) arccos = ; tan = –1.

27. (A) Let y = f(x) = 2e–x; then = e–x and ln = –x. So

x = –ln = ln = f –1(y).

Thus f –1(x) = ln .

28. (C) The function in (C) is not one-to-one since, for each y between – and 
(except 0), there are two x’s in the domain.

29. (D) The domain of the ln function is the set of positive reals. The function 
g(x) > 0 if x2 < 9.

30. (C) Since the domain of f(g) is (–3, 3), ln (9 – x2) takes on every real value less
than or equal to ln 9.

31. (A) Substituting t 2 = x – 3 in y(t) = t 2 + 4 yields y = x + 1.

32. (D) Using the identity cos2(t) + sin2(t) = 1, x + = 1.y
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87

A. DEFINITIONS AND EXAMPLES
The number L is the limit of the function f(x) as x approaches c if, as the values of x get
arbitrarily close (but not equal) to c, the values of f(x) approach (or equal) L. We write

.

In order for to exist, the values of f must tend to the same number L as x

approaches c from either the left or the right. We write

for the left-hand limit of f at c (as x approaches c through values less than c), and

for the right-hand limit of f at c (as x approaches c through values greater than c).

EXAMPLE 1
The greatest-integer function g(x) = [x], shown in Figure N2–1, has different left-
hand and right-hand limits at every integer. For example,

.

This function, therefore, does not have a limit at x = 1 or, by the same reasoning,
at any other integer.

 
lim[ ] lim[ ]
x x

x x
Æ Æ- +

= =
1 1

0 1but

lim ( )
x c

f x
→ +

lim ( )
x c

f x
→ −

lim ( )
x c

f x
→

lim ( )
x c

f x L
→

=

Limits and Continuity CHAPTER2
Concepts and Skills
In this chapter, you will review

• general properties of limits;
• how to find limits using algebraic expressions, tables, and graphs;
• horizontal and vertical asymptotes;
• continuity;
• removable, jump, and infinite discontinuities;
• and some important theorems, including the Squeeze Theorem, the Extreme

Value Theorem, and the Intermediate Value Theorem.

Limit

One-sided
limits
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FIGURE N2–1

However, [x] does have a limit at every nonintegral real number. For example,

EXAMPLE 2
Suppose the function y = f(x), graphed in Figure N2–2, is defined as follows:

f (x) = 

We want to decide which limits of f, if any, exist at
(a) x = –2, (c) x = 0,
(b) x = 2, (d) x = 4.

FIGURE N2–2
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We note that
(a) = –1, so the right-hand limit exists at x = –2, even though f is not

defined at x = –2.
(b) does not exist. Although f is defined at x = 0 (f(0) = 2), we observe 

that = 1 whereas = 0. For the limit to exist at a point, the left-

hand and right-hand limits must be the same.
(c) = –2. This limit exists because = = –2. 

Indeed, the limit exists at x = 2 even though it is different from the value of f at 
2 ( f (2) = 0).

(d) = 0, so the left-hand limit exists at x = 4.

EXAMPLE 3
Prove that = 0.

The graph of ÔxÔ is shown in Figure N2–3.
We examine both left- and right-hand limits of the absolute-value function as

Since

,

it follows that

and

.

Since the left-hand and right-hand limits both equal 0, .

Note that if c > 0 but equals –c if c < 0.

FIGURE N2–3

x

y

1

10

lim
x c

x c
→

=

lim
x

x
→

=
0

0

lim lim
x x

x x
→ →+ +

= =
0 0

0

lim lim( )
x x

x x
→ →− −

= − =
0 0

0

 
x

x x

x x
=

- <
>

Ï
Ì
Ó

  if     

    if  

0

0

x → 0.

lim
x

x
→0

lim ( )
x

f x
→ −4

lim ( )
x

f x
→ +2

lim ( )
x

f x
→ −2

lim ( )
x

f x
→2

lim ( )
x

f x
→ +0

lim ( )
x

f x
→ −0

lim ( )
x

f x
→0

lim ( )
x

f x
→− +2
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90 AP Calculus

DEFINITION

The function f(x) is said to become infinite (positively or negatively) as x approaches c if
f(x) can be made arbitrarily large (positively or negatively) by taking x sufficiently close
to c. We write

.

Since for the limit to exist it must be a finite number, neither of the preceding limits exists.
This definition can be extended to include x approaching c from the left or from the

right. The following examples illustrate these definitions.

EXAMPLE 4
The graph of f(x) = (Figure N2–4) shows that

,

FIGURE N2–4MMMMMMM

EXAMPLE 5
From the graph of g(x) = (Figure N2–5) we see that

.

We may also say that .

FIGURE N2–5MMMMMMM

Remember that none of the limits in Examples 4 and 5 exists!

x

y

1

1

lim ( )
x

g x
→

= ∞
1

lim ( ) lim ( )
x x

g x g x
→ →− +

= = ∞
1 1

1
1 2( )x −

x

y

1

1

lim

lim .

x

x

x

x

→

→

−

+

= −∞

= +∞

0

0

1

1

1
x

lim ( ) ( ) )
x c x c

f x f x
→ →

= +∞ = −∞  (or lim
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Limits and Continuity 91

DEFINITION

We write

if the difference between f(x) and L can be made arbitrarily small by making x sufficiently
large positively (or negatively).

In Examples 4 and 5, note that and .

EXAMPLE 6
From the graph of h(x) = 1 + (Figure N2–6), we can conjecture that

and
,

FIGURE N2–6

DEFINITION
The theorems that follow in §C of this chapter confirm the conjectures made about limits
of functions from their graphs.

Finally, if the function f(x) becomes infinite as x becomes infinite, then one or more
of the following may hold:

.lim ( ) lim ( )
x x

f x f x
→+∞ →−∞

= +∞ −∞ = +∞ −∞ or     or     or 

x

y

1
–1

–1

1

2

lim ( )

lim ( ) .
x

x

h x

h x
→

→

−

+

= −∞

= +∞
2

2

lim ( ) lim ( )
x x

h x h x
→−∞ →+∞

= = 1

3
2

1
2x

x
x−

= +
−

lim ( ) lim ( )
x x

g x g x
→∞ →−∞

= = 0lim ( ) lim ( )
x x

f x f x
→∞ →−∞

= = 0

lim ( ) lim ( ) )
x x

f x L f x L
→∞ →−∞

= =   (or 
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92 AP Calculus

END BEHAVIOR OF POLYNOMIALS

Every polynomial whose degree is greater than or equal to 1 becomes infinite as x does.
It becomes positively or negatively infinite, depending only on the sign of the leading
coefficient and the degree of the polynomial.

EXAMPLE 7
(a) Let f(x) = x3 – 3x2 + 7x + 2. Then

, .

(b) If g(x) = –4x4 + 1,000,000x3 + 100, then

, .

(c) Suppose f(x) = –5x3 + 3x2 –4U + 8. Then

, .

(d) For k(x) = U – 0.001x, we see that

, .

It’s easy to write rules for the behavior of a polynomial as x becomes infinite!

B. ASYMPTOTES
The line y = b is a horizontal asymptote of the graph of y = f(x) if

The graph of f(x) = (Figure N2–4) on page 90 has the x-axis (y = 0) as horizontal 
asymptote.

So does the graph of g(x) = (Figure N2–5) on page 90.

The graph of h(x) = has the line y = 1 
as horizontal asymptote, as shown at the right.

x

y

1
–1

–1

1

2

x
x

+
−

1
2

1
1 2( )x −

1
x

lim ( ) lim ( ) .
x x

f x b f x b
→∞ →−∞

= =    or    

lim ( )
x

k x
→−∞

= +∞lim ( )
x

k x
→+∞

= −∞

lim ( )
x

h x
→−∞

= +∞lim ( )
x

h x
→+∞

= −∞

lim ( )
x

g x
→−∞

= −∞lim ( )
x

g x
→+∞

= −∞

lim ( )
x

f x
→−∞

= −∞lim ( )
x

f x
→+∞

= +∞

Horizontal
asymptote
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The line x = a is a vertical asymptote of the graph of y = f(x) if one or more of the
following holds:

or

.

The graph of f(x) = (Figure N2–4) has x = 0 (the y-axis) as vertical asymptote.

The graph of g(x) = (Figure N2–5) has x = 1 as vertical asymptote.

The graph of h(x) = (Figure N2–6) has the line x = 2 as vertical asymptote.

EXAMPLE 8
From the graph of k(x) = in 

Figure N2–7, we see that y = 2 is a 
horizontal asymptote, since

Also, x = 3 is a vertical asymptote; the
graph shows that

and

.

FIGURE N2–7MMMMMMM

C. THEOREMS ON LIMITS
If lim f(x) and lim g(x) are finite numbers, then:

(1) lim kf(x) = k lim f(x).

(2) lim[f(x) + g(x)] = lim f(x) + lim g(x).

(3) lim f(x)g(x) = (lim f(x))(lim g(x)).

(4) lim = (if lim g(x) ! 0).

(5) lim
x c

k k
→

=

lim ( )
lim ( )

f x
g x

( )
( )

f x
g x

y

1

1

2 3

2

lim ( )
x

k x
→ +

= +∞
3

lim ( )
x

k x
→ −

= −∞
3

 
lim ( ) lim ( ) .

x x
k x k x

Æ+ Æ-• •
= = 2

2 4
3

x
x

−
−

x
x

+
−

1
2

1
1 2( )x −

1
x

lim ( ) lim ( )
x a x a

f x f x
→ →+ +

= +∞ = −∞    or    

lim ( ) lim ( )
x a x a

f x f x
→ →− −

= +∞ = −∞    or    
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Vertical
asymptote
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94 AP Calculus

(6) THE SQUEEZE OR SANDWICH THEOREM. If f(x) ! g(x) ! h(x) and if 
then Figure N2–8 illustrates this  

theorem.

FIGURE N2–8

Squeezing function g between functions f and h forces g to have the same limit L
at x = c as do f and g.

EXAMPLE 9

= 5 • 4 - 3 • 2 + 1
= 15.

EXAMPLE 10

= 0       • 1
= 0.

EXAMPLE 11

= (3 + 2 – 1) ∏ (1 + 1)
= 2.

EXAMPLE 12

. Since

and since, by the definition of in §A, x must be different from 3 as 

x Æ 3, it follows that

lim ( )
x c

f x
→

( )( )
( )

x x
x

x x
− +

−
= + ≠3 3

3
3 3      

lim lim
( )( )

x x

x
x

x x
x→ →

−
−

− +
−=

3

2

3

9
3

3 3
3

lim lim( ) lim( )
x x x

x x
x x x x

→− →− →−

− −
+ = − − ÷ +

1

2

2 1

2

1

23 2 1
1 3 2 1 1

lim( ) lim lim(cos )•
x x x

x x x x
→ → →

=
0 0 0

2 2cos

lim( ) lim lim lim
x x x x

x x x x
→ → → →

− + = − +
2

2

2

2

2 2
5 3 1 5 3 1

h(x)

g(x)

f(x)

c0

L

lim ( ) .
x c

g x L
→

=lim ( ) lim ( ) ,
x c x c

f x h x L
→ →

= =
Sandwich
(Squeeze)
Theorem
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Limits and Continuity 95

where the factor x – 3 is removed before taking the limit.

EXAMPLE 13

EXAMPLE 14
= = h. As x Æ 0, the numerator approaches 1 while the 

denominator approaches 0; the limit does not exist.

EXAMPLE 15

EXAMPLE 16

EXAMPLE 17

= .

D. LIMIT OF A QUOTIENT OF POLYNOMIALS
To find , where P(x) and Q(x) are polynomials in x, we can divide both

numerator and denominator by the highest power of x that occurs and use the fact that

EXAMPLE 18

.

EXAMPLE 19

lim lim
x x

x x

x
x x

x x
→∞ →∞

+ +
−

+ +

−
= = ∞

4 5 1
37 9

4 5 1

37 9

4

3

3 4

4

 (no limit).

lim lim
x x

x
x x

x x

x x
→∞ →∞

−
+ +

−

+ +

−
+ += = =3

4

3 1

4 1 1

0 0
0 0 12

2

2

0

lim .
x x→∞

=1 0

lim
( )
( )x

P x
Q x→∞

− = −
→ +lim ( )h h0

1
2 2

1
4

lim lim lim
( )
( ) ( )h h hh h

h
h h

h
h h→ → →+ −

− +
+

−
+





 = =

0 0 0

1 1
2

1
2

2 2
2 2 2 2

lim lim lim .
( )

∆ ∆ ∆

∆
∆

∆ ∆
∆ ∆

x x x

x
x

x x
x x

→ → →

+ − +
= = + =

0

2 2

0

2

0

3 3 6
6 6

lim lim .
x x

x

x→ →

−
− = =

1

2

2 1

1
1

1 1

lim
x x→0 2

1lim
x

x
x→0 3

lim lim lim .
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( )( ) –x x x

x

x

x x x
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x x
x→− →− →
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−

+ − +
+ −

− +
−
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−
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3 3

3 3
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96 AP Calculus

EXAMPLE 20

Example 20. .

THE RATIONAL FUNCTION THEOREM

We see from Examples 18, 19, and 20 that: if the degree of P(x) is less than that of Q(x),

then ; if the degree of P(x) is higher than that of Q(x), then or –h

(i.e., does not exist); and if the degrees of P(x) and Q(x) are the same, then ,

where an and bn are the coefficients of the highest powers of x in P(x) and Q(x) respectively. 
This theorem holds also when we replace “xÆh” by “xÆ –h.” 
Note also that:

(i) when , then y = 0 is a horizontal asymptote of the graph of y = ;

(ii) when , then the graph of y = has no horizontal 

asymptotes;

(iii) when , then is a horizontal asymptote of the graph of

y = .

EXAMPLE 21

; 

; (no limit).

E. OTHER BASIC LIMITS
E1. The basic trigonometric limit is:

if q is measured in radians.

EXAMPLE 22
Prove that = 0.

Since, for all x, , it follows that, if x > 0, then . But 

as x Æ h, and both approach 0; therefore by the Squeeze theorem, 
must also approach 0. To obtain graphical confirmation of this fact, and of the 
additional fact that also equals 0, graphsin x

x
lim
x→−∞

sin x
x

1
x

− 1
x

 
− 1 1

x
x

x x
! !
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 −1 1! !sin x
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− = −∞
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x x
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7
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2 3
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+ + =
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P x
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P x
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= ∞lim
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Limits and Continuity 97

in [–4U, 4U] ¥ [–1, 1]. Observe, as x Æ ±h, that y2 and y3 approach 0 and that y1

is squeezed between them.

EXAMPLE 23
Find .

E2. The number e can be defined as follows:

The value of e can be approximated on a graphing calculator to a large number of deci-
mal places by evaluating

for large values of x.

F. CONTINUITY
If a function is continuous over an interval, we can draw its graph without lifting pencil
from paper. The graph has no holes, breaks, or jumps on the interval.

Conceptually, f (x) is continuous at a point x = c, then the closer x is to c, the closer
f (x) gets to f (c). This is made precise by the following definition:

DEFINITION

The function y = f (x) is continuous at x = c if

(1) f (c) exists; (that is, c is in the domain of f );

(2) exists;

(3) = f (c).

A function is continuous over the closed interval [a,b] if it is continuous at each x
such that a ! x ! b.

A function that is not continuous at x = c is said to be discontinuous at that point.
We then call x = c a point of discontinuity.

lim ( )
x c

f x
→

lim ( )
x c

f x
→

y
x

X

1 1
1

= +





e
nn

n

= +



→∞

lim .1
1

lim
sin

lim
sin

lim
sin

x x x

x
x

x
x

x
x→ → →

= = =
0 0 0

3 3 3
3

3
3

3
33 1 3⋅ = .

lim sin
x

x
x→0

3

y x
x

y
x

y
x1 2 3

1 1= = = −sin , , and

Limit 
definition 
of e

Continuous
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CONTINUOUS FUNCTIONS

Polynomials are continuous everywhere; namely, at every real number.
Rational functions, , are continuous at each point in their domain; that is,

except where Q(x) = 0. The function , for example, is continuous except at x = 0,
where f is not defined.

The absolute value function f(x) = !x! (sketched in Figure N2–3, page 89) is continu-
ous everywhere.

The trigonometric, inverse trigonometric, exponential, and logarithmic functions
are continuous at each point in their domains.

Functions of the type (where n is a positive integer " 2) are continuous at each

x for which is defined.
The greatest-integer function f(x) = [x] (Figure N2–1, page 88) is discontinuous at

each integer, since it does not have a limit at any integer.

KINDS OF DISCONTINUITIES

In Example 2, page 88, y = f(x) is defined as follows:

f(x) = 

f(x) = 

The graph of f is shown at the right.

MMMMMMWe observe that f is not continuous at x = –2, x = 0, or x = 2. 
At x = –2, f is not defined.
At x = 0, f is defined; in fact, f(0) = 2. However, since = 1 and 

= 0, does not exist. Where the left- and right-hand limits exist, but 

are different, the function has a jump discontinuity. The greatest-integer (or step) func-

tion, y = [x], has a jump discontinuity at every integer. (See page 88.)

At x = 2, f is defined; in fact, f(2) = 0. Also, = –2; the limit exists. 

However, . This discontinuity is called removable. If we were to redefine

the function at x = 2 to be f(2) = –2, the new function would no longer have a discon-
tinuity there. We cannot, however, “remove” a jump discontinuity by any redefinition
whatsoever.

Whenever the graph of a function f(x) has the line x = a as a vertical asymptote,
then f(x) becomes positively or negatively infinite as x Æ a+ or as x Æ a–. The function is
then said to have an infinite discontinuity. See, for example, Figure N2–4 (page 90) for 

f(x) = , Figure N2–5 (page 90) for g(x) = , or Figure N2–7 (page 93) for k(x) =

. Each of these functions exhibits an infinite discontinuity.2 4
3

x
x
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1 2( )x −

1
x
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x

f x f
→

≠
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Jump 
discontinuity
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discontinuity

Infinite
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EXAMPLE 24
is not continuous at x = 0 or = –1, since the function is 

not defined for either of these numbers. Note also that neither nor 
exists.

EXAMPLE 25
In Figure N2–9, f(x) is continuous on [(0,1), (1,3), and (3,5)]. The discontinuity at
x = 1 is removable; the one at x = 3 is not. (Note that f is continuous from the right
at x = 0 and from the left at x = 5.)

FIGURE N2–9

In Examples 26 through 31, we determine whether the functions are continu-
ous at the points specified:

EXAMPLE 26
at x = –1. Since f is a polynomial, it is continuous 

everywhere, including, of course, at x = –1.

EXAMPLE 27
(a) at x = 3; (b) at x = 0. This function is continuous except where the 

denominator equals 0 (where g has an infinite discontinuity). It is not continuous

at x = 3, but is continuous at x = 0.

EXAMPLE 28

(a) at x = 2; (b) at x = 3.
h(x) has an infinite discontinuity at 

x = 2; it is continuous at x = 3 and at every
other point different from 2. The disconti-
nuity at x = 2 is not removable. See
Figure N2–10.

FIGURE N2–10MMMM
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1 2

h x
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2 2

1 2

 if 

       if 

g x x( ) = −
1
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f x x x( ) = − +1
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4 23 7

y

y = f(x)1

2

1 2 3 4 5

lim ( )
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f x
→−1

lim ( )
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f x
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f x
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x x

x
x x( ) ( )= =

−
+

−
+

1 1
12
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100 AP Calculus

EXAMPLE 29

(x | 2)

at x = 2.
Note that k(x) = x + 2 for all x | 2. The

function is continuous everywhere except
at x = 2, where k is not defined. The dis-
continuity at 2 is removable. If we rede-
fine f(2) to equal 4, the new function will
be continuous everywhere. See Figure 
N2–11.

FIGURE N2–11MMMMMM

EXAMPLE 30

at x = 1.
f (x) is not continuous at x = 1 since

. This func-

tion has a jump discontinuity at x = 1
(which cannot be removed). See Figure
N2–12.

FIGURE N2–12MMMMMM

EXAMPLE 31

at x = 2.
g(x) is not continuous at x = 2 since

. This discontinu-

ity can be removed by redefining g(2) to
equal 4. See Figure N2–13.

FIGURE N2–13MMMMMMM
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→
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=

2 2

1 2

  

    

x

y

(1,4)

 1

1

lim ( )
x

f x
→ +
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THEOREMS ON CONTINUOUS FUNCTIONS

(1) The Extreme Value Theorem. If f is continuous on the closed interval [a,b], then
f attains a minimum value and a maximum value somewhere in that interval.

(2) The Intermediate Value Theorem. If f is continuous on the closed interval [a,b],
and M is a number such that f(a) ≤ M ≤ f(b), then there is at least one number, c, between
a and b such that f(c) = M.

Note an important special case of the Intermediate Value Theorem:
If f is continuous on the closed interval [a,b], and f(a) and f(b) have opposite signs,

then f has a zero in that interval (there is a value, c, in [a,b] where f(c) = 0).

(3) The Continuous Functions Theorem. If functions f and g are both continuous at 
x = c, then so are the following functions:

(a) kf, where k is a constant;
(b) f ± g;
(c) f · g;

(d) , provided that g(c) ! 0.

EXAMPLE 32

Show that f(x) = has a root between x = 2 and x = 3.

The rational function f is discontinuous only at x = –1. f(2) = , and 

f(3) = 1. Since f is continuous on the interval [2,3] and f (2) and f (3) have 
opposite signs, there is a value, c, in the interval where f (c) = 0, by the
Intermediate Value Theorem.

Chapter Summary
In this chapter, we have reviewed the concept of a limit. We’ve practiced finding limits
using algebraic expressions, graphs, and the Squeeze (Sandwich) Theorem. We have
used limits to find horizontal and vertical asymptotes and to assess the continuity of a
function. We have reviewed removable, jump, and infinite discontinuities. We have also
looked at the very important Extreme Value Theorem and Intermediate Value Theorem.

−
1
3

x
x

2 5
1

−
+

f
g
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Theorem

Intermediate
Value
Theorem

7_3679_APCalc_04Chapter2  10/3/08  4:21 PM  Page 101
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Practice Exercises

Part A. Directions: Answer these questions without using your calculator.

1. is

(A) 1 (B) 0 (C) (D) –1 (E) h

2. is

(A) 1 (B) 0 (C) –4 (D) –1 (E) h

3. is

(A) 0 (B) 1 (C) (D) h (E) none of these

4. is

(A) 1 (B) 0 (C) h (D) –1 (E) nonexistent

5. is

(A) 4 (B) 0 (C) 1 (D) 3 (E) h

6. is

(A) –2 (B) (C) 1 (D) 2 (E) nonexistent

7. is

(A) –h (B) –1 (C) 0 (D) 3 (E) h

8. is

(A) 3 (B) h (C) 1 (D) –1 (E) 0

9. is

(A) –1 (B) 1 (C) 0 (D) h (E) none of these

10. is

(A) –1 (B) 1 (C) 0 (D) h (E) none of these

lim
x

x

x→−∞

−2
2

lim
x

x

x→∞

−2
2

lim
x

x

x→∞

+
−

3 27
27

2

3

lim
x

x

x x→−∞

+
+ +

5 27
20 10 9

3

2

− 1
4

lim
x

x

x x→∞

−
− −

4

4 2

2

2

lim
x

x

x→

−
−2

3

2

8
4

lim
x

x
x→0

1
4

lim
x

x

x x→

−
− −3 2

3
2 3

lim
–x

x

x→∞

−4
1

2

2

− 1
2

lim
x

x

x→

−
+2

2

2

4
4
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11.

(A) = 0 (B) = (C) = 1 (D) = 5 (E) does not exist

12.

(A) = 0 (B) = (C) = 1 (D) = (E) does not exist

13. The graph of y = arctan x has

(A) vertical asymptotes at x = 0 and x = U
(B) horizontal asymptotes at y = 
(C) horizontal asymptotes at y = 0 and y = U
(D) vertical asymptotes at x = 
(E) none of these

14. The graph of y = has

(A) a vertical asymptote at x = 3 (B) a horizontal asymptote at y = 

(C) a removable discontinuity at x = 3 (D) an infinite discontinuity at x = 3
(E) none of these

15. is

(A) 1 (B) (C) 3 (D) h (E)

16. is

(A) h (B) 1 (C) nonexistent (D) –1 (E) none of these

17. Which statement is true about the curve ?

(A) The line x = is a vertical asymptote.
(B) The line x = 1 is a vertical asymptote.
(C) The line y = is a horizontal asymptote.
(D) The graph has no vertical or horizontal asymptote.
(E) The line y = 2 is a horizontal asymptote.

18. is

(A) –4 (B) –2 (C) 1 (D) 2 (E) nonexistent

lim ( )( )x

x
x x→∞

+
− +
2 1

2 2

2

− 1
4

− 1
4

y
x

x x
=

+
+
2 4

2 7 4

2

2–

limsin
x x→0

1

1
4

1
3

lim sin
x

x
x x→ +0 2 3

1
3

x
x

2 9
3 9

−
−

± π
2

± π
2

3
2

2
3

lim sin
x

x
x→0

2
3

1
5

lim sin
x

x
x→0

5
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19. is

(A) 0 (B) nonexistent (C) 1 (D) –1 (E) none of these

20. is

(A) 0 (B) h (C) nonexistent (D) –1 (E) 1

21. is

(A) 1 (B) 0 (C) h (D) nonexistent (E) none of these

22. Let 

Which of the following statements is (are) true?

I. exists

II. f(1) exists
III. f is continuous at x = 1

(A) I only (B) II only (C) I and II
(D) none of them (E) all of them

23. If for x | 0,

and if f is continuous at x = 0, then k =

(A) –1 (B) (C) 0 (D) (E) 1

24. Suppose 

Then f(x) is continuous

(A) except at x = 1 (B) except at x = 2 (C) except at x = 1 or 2
(D) except at x = 0, 1, or 2 (E) at each real number

25. The graph of has

(A) one vertical asymptote, at x = 1
(B) the y-axis as vertical asymptote
(C) the x-axis as horizontal asymptote and x = ±1 as vertical asymptotes
(D) two vertical asymptotes, at x = ±1, but no horizontal asymptote
(E) no asymptote

f x
x

( ) = −
4

12

f x
x x

x x
x

f

f

( )
( )

, ,

( ) ,

( ) .

= −
− + ≠

= −

=










3 1
3 2

1 2

1 3

2 4

2  for 

1
2

− 1
2

f x
x x

x
f k

( )

( ) ,

=
−

=







2

2
0

lim ( )
x

f x
→1

f x
x

x x

x

( )
.

=






−
− ≠

=

2 1
1 1

4 1

if

if

lim
sin( )

x

x
x→π

π −
π −

lim sin
x

x x→∞

1

lim
x

x
x→0
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26. The graph of has

(A) a horizontal asymptote at y = but no vertical asymptote
(B) no horizontal asymptote but two vertical asymptotes, at x = 0 and x = 1
(C) a horizontal asymptote at y = and two vertical asymptotes, at x = 0 and x = 1
(D) a horizontal asymptote at x = 2 but no vertical asymptote
(E) a horizontal asymptote at y = and two vertical asymptotes, at x = ±1

27. Let .

Which of the following statements is (are) true?

I. f(0) exists
II. exists 

III. f is continuous at x = 0

(A) I only (B) II only (C) I and II only
(D) all of them (E) none of them

Part B. Directions: Some of the following questions require the use of a graphing 
calculator.

28. If [x] is the greatest integer not greater than x, then is

(A) (B) 1 (C) nonexistent (D) 0 (E) none of these

29. (With the same notation) is

(A) –3 (B) –2 (C) –1 (D) 0 (E) none of these

30.

(A) is –1 (B) is infinity (C) oscillates between –1 and 1
(D) is zero (E) does not exist

31. The function f(x) = 
( )
(     )

(A) is continuous everywhere
(B) is continuous except at x = 0
(C) has a removable discontinuity at x = 0
(D) has an infinite discontinuity at x = 0
(E) has x = 0 as a vertical asymptote

x x x

x

2 0

0 0

    

          

≠

=





limsin
x

x
→∞

lim[ ]
x

x
→−2

1
2

lim[ ]
x

x
→1 2

lim ( )
x

f x
→0

f x
x x

x x

x
( ) =







+
≠
=

2

0

1 0

   if 

          if 

1
2

1
2

+ 1
2

y
x x

x x
=

+ +
−

2 2 3
4 4

2

2

Limits and Continuity 105

7_3679_APCalc_04Chapter2  10/3/08  4:21 PM  Page 105
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Questions 32–36 are based on the
function f shown in the graph and
defined below:

32.

(A) equals 0 (B) equals 1 (C) equals 2
(D) does not exist (E) none of these

33. The function f is defined on [–1,3]

(A) if x | 0 (B) if x | 1 (C) if x | 2
(D) if x | 3 (E) at each x in [–1,3]

34. The function f has a removable discontinuity at

(A) x = 0 (B) x = 1 (C) x = 2 (D) x = 3 (E) none of these

35. On which of the following intervals is f continuous?

(A) –1 ! x ! 0 (B) 0 < x < 1 (C) 1 ! x ! 2
(D) 2 ! x ! 3 (E) none of these

36. The function f has a jump discontinuity at

(A) x = –1 (B) x = 1 (C) x = 2
(D) x = 3 (E) none of these

lim ( )
x

f x
→2

x

y

2 310

1

2

–1

•

•

••

•

  

f x

x x

x x

x x

x

x x

( ) =

- - <( )
- ( )

- + < <( )
=( )

- <( )

Ï

Ì

Ô
Ô
Ô

Ó

Ô
Ô
Ô

1 1 0

2 2 0 1

2 1 2

1 2

2 4 2 3

2

!

! !

!
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37. Suppose is not defined. Which of the

following statements is (are) true?

I.

II. f is continuous everywhere except at x = –3.
III. f has a removable discontinuity at x = –3.

(A) None of them (B) I only (C) III only
(D) I and III only (E) All of them

38. If y = , then is

(A) 0 (B) (C) (D) (E) nonexistent

39. is

(A) -• (B) (C)

(D) • (E) none of these

*This icon indicates a challenge question, one that may be more difficult than what you will
encounter on the AP Calculus exam.

  
3

2
+ p

  
3

2
- p

3
1+ arctan
x 

lim
xÆ0

1
3

1
2

1
12

lim
x

y
Æ 0

1

2 10
1

+ x

lim ( ) .
x

f x
→−

= −
3

1

 
lim ( ) , lim ( ) , ( )

x x
f x f x f

Æ- Æ-- +
= - = - -

3 3
1 1 3and

*
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108 AP Calculus

Answer Key

Answers Explained
1. (B) The limit as x Æ 2 is 0 ÷ 8.

2. (D) Use the Rational Function Theorem (page 96). The degrees of P(x) and Q(x)
are the same.

3. (C) Remove the common factor x – 3 from numerator and denominator.

4. (A) The fraction equals 1 for all nonzero x.

5. (D) Note that .

6. (B) Use the Rational Function Theorem.

7. (A) Use the Rational Function Theorem.

8. (E) Use the Rational Function Theorem.

9. (C) The fraction is equivalent to ; the denominator approaches h.

10. (D) Since , therefore, as x Æ –h, the fraction Æ +h.

11. (D)

12. (B)

13. (B) Because the graph of y = tan x has vertical asymptotes at x = , the graph 

of the inverse function y = arctan x has horizontal asymptotes at y = .

14. (C) Since (provided x | 3), y can be defined to be 

equal to 2 at x = 3, removing the discontinuity at that point.

15. (B) Note that .
sin sin

( )
sin

• •
x

x x
x

x x
x

x x2 3 3
1

3 1
1
3+ = + = + →

x
x

x x
x

x2 9
3 9

3 3
3 3

3
3

−
− =

− +
− =

+( )( )
( )

±
π
2

±
π
2

lim sin lim sin lim sin
x x x

x
x

x
x→ → →

= ⋅ =
0 0 0

2
3

1
3

2 2
2

2
3

22
2

2
3

x
x

=

lim sin lim sin lim sin
x x x

x
x

x
x

x
x→ → →

= ⋅ =
0 0 0

5 5 5
5

5 5
5

== 5

2
2 2 2

− −=
x

x
x

1
22 x

x

x

x x x

x x

3

2

28

4

2 2 4

2 2

−
− =

− + +
− +

( )( )

( )( )

1. B
2. D
3. C
4. A
5. D
6. B
7. A
8. E
9. C

10. D

11. D
12. B
13. B
14. C
15. B
16. C
17. A
18. B
19. B
20. E

21. A
22. C
23. B
24. B
25. C
26. C
27. D
28. D
29. E
30. E

31. A
32. A
33. E
34. C
35. B
36. B
37. D
38. E
39. E
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16. (C) As x Æ 0, takes on varying finite values as it increases. Since the sine 

function repeats, sin oscillates, taking on, infinitely many times, each 

value between –1 and 1. The calculator graph of Y1 = sin(1/X) exhibits 
this oscillating discontinuity at x = 0.

17. (A) Note that, since y = , both x = 2 and x = are vertical 

asymptotes. Also, y = is a horizontal asymptote.

18. (B) . Use the Rational Function Theorem (page 96).

19. (B) Since !x! = x if x > 0 but equals –x if x < 0, while 

20. (E) Note that x sin can be rewritten as and that, as x Æ h, Æ 0.

21. (A) As x Æ U, (U – x) Æ 0.

22. (C) Since f(x) = x + 1 if x | 1, exists (and is equal to 2).

23. (B) , for all x | 0. For f to be continuous at x = 0, 

must equal f(0). .

24. (B) Only x = 1 and x = 2 need be checked. Since for x | 1, 2, and

, f is continuous at x = 1. Since does not exist,

f is not continuous at x = 2.

25. (C) As x Æ ±h, y = f(x) Æ 0, so the x-axis is a horizontal asymptote. Also, as 
x Æ ±1, y Æ h, so x = ±1 are vertical asymptotes.

26. (C) As x Æ h, y Æ ; the denominator (but not the numerator) of y equals 0 

at x = 0 and at x = 1.

27. (D) The function is defined at 0 to be 1, which is also 

28. (D) See Figure N2–1 on page 88.

29. (E) Note, from Figure N2–1, that but

30. (E) As x Æ h, the function sin x oscillates between –1 and 1; hence the limit
does not exist.

31. (A) Note that = x if x | 0 and that = 0.

32. (A) lim ( ) lim ( ) .
x x

f x f x
→ →− +

= =
2 2

0

lim
x

f
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x
x
2

lim [ ] – .
x
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2lim [ ]
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lim lim( ).
x x

x x
x x
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+
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1
2
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x
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x
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→
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f x x
x
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3

2
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x

f x
→
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1
2
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x
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f x
x x

x
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( )
( )

= =
− −1

2
1

2
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x

f x
→1

1
x

sin1

1
x

x

1
x

lim .
x

x
x→ −

− = −
0

1lim
x

x
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=
0
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x

x
x→ +

=
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1lim
x
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2 1
2 2

2 1
4

2 2

2

x
x x

x

x

+
− + =

+
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33. (E) Verify that f is defined at x = 0, 1, 2, and 3 (as well as at all other points in
[–1,3]).

34. (C) Note that However, f(2) = 1. Redefining f(2) as 0 

removes the discontinuity.

35. (B) The function is not continuous at x = 0, 1, or 2.

36. (B)

37. (D) No information is given about the domain of f except in the neighborhood
of x = –3.

38. (E) As x Æ , and therefore y Æ 0. As x Æ , Æ -•, so 

and therefore y Æ . Because the two one-sided limits are not 

equal, the limit does not exist. (Verify with a calculator.)

39. (E) As x Æ , arctan Æ , so y Æ .  As x Æ , y Æ .  

The graph has a jump discontinuity at x = 0.  (Verify with a calculator.)

3
2

+ π
 0+3

2
− π− π

2
1
x

0-

1
2

10 0
1
x Æ

1
x

0- 10
1
x Æ•0+

lim ( ) lim ( ) .
x x

f x f x
→ →− +

= ≠ =
1 1

0 1

lim ( ) lim ( ) .
x x

f x f x
→ →− +

= =
2 2

0
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A. DEFINITION OF DERIVATIVE
At any x in the domain of the function y = f(x), the derivative is defined as

. (1)

The function is said to be differentiable at every x for which this limit exists, and its 
derivative may be denoted by f !(x), y!, , or Dx y. Frequently )x is replaced by h or

some other symbol.
The derivative of y = f(x) at x = a, denoted by may be defined as

follows:

(2)

The fraction is called the difference quotient for f at a and represents

the average rate of change of f from a to a + h. Geometrically, it is the slope of the
secant PQ to the curve y = f(x) through the points P(a, f(a)) and Q(a + h, f(a + h)). The
limit, f !(a), of the difference quotient is the (instantaneous) rate of change of f at point a.
Geometrically, the derivative f !(a) is the limit of the slope of secant PQ as Q approaches
P; that is, as h approaches zero. This limit is the slope of the curve at P. The tangent to the
curve at P is the line through P with this slope.

f a h f a
h

( ) ( )+ −

′ = + −
→

f a
f a h f a

hh
( ) lim

( ) ( )
.

0

′ ′f a y a( ) ( ), or 

dy
dx

lim
( ) ( )

lim
∆ ∆

∆
∆

∆
∆x x

f x x f x
x

y
x→ →

+ −
0 0

 or 

Differentiation CHAPTER3
Concepts and Skills
In this chapter, you will review

• derivatives as instantaneous rates of change;
• estimating derivatives using graphs and tables;
• derivatives of basic functions;
• the product, quotient, and chain rules;
• implicit differentiation;
• derivatives of inverse functions;
• Rolle’s Theorem and the Mean Value Theorem.

In addition, BC Calculus students will review

• derivatives of parametrically defined functions;
• L’Hopital’s Rule for evaluating limits of indeterminate forms.

Derivative

Differentiable

Difference 
quotient

Average rate of
change

Instantaneous
rate of change

Slope of a curve
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112 AP Calculus

FIGURE N3–1a

In Figure N3–1a, PQ is the secant line through (a, f(a)) and (a + h, f(a + h)). The 
average rate of change from a to a + h equals , which is the slope of secant PQ.

PT is the tangent to the curve at P. As h approaches zero, point Q approaches point
P along the curve, PQ approaches PT, and the slope of PQ approaches the slope of PT,
which equals f !(a).

If we replace (a + h) by x, in (2) above, so that h = x – a, we get the equivalent expression

. (3)

See Figure N3–1b.

FIGURE N3–1b

x

y

tangent line

f (x) – f (a)

Q(x, f (x))

P(a, f (a))
(x – a)

R

T

′ = −
−→

f a
f x f a

x ax a
( ) lim

( ) ( )

RQ
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x

y

tangent line

f (a + h ) – f (a)

Q(a + h, f(a + h))

P(a, f (a))
h
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T
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The second derivative, denoted by f "(x) or or y", is the (first) derivative of f !(x).

Also, f "(a) is the second derivative of f(x) at x = a.

B. FORMULAS
The formulas in this section for finding derivatives are so important that familiarity with them
is essential. If a and n are constants and u and v are differentiable functions of x, then:

(1)

(2)

(3)

(4)

(the Product Rule) (5)

(v | 0) (the Quotient Rule) (6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)
d
dx

u
d
dx

u
u

du
dx

ucos arccos ( )− = = −
−

− < <1

2

1

1
1 1

d
dx

u
d
dx

u
u

du
dx

usin arcsin ( )− = =
−

− < <1

2

1

1
1 1

d
dx

a a a
du
dx

u u= ln

d
dx

e e
du
dx

u u=

d
dx

u
u

du
dx

ln = 1

d
dx

u u u
du
dx

csc – csc cot=

d
dx

u u u
du
dx

sec sec tan=

d
dx

u u
du
dx

cot csc= − 2

d
dx

u u
du
dx

tan sec= 2

d
dx

u u
du
dx

cos – sin=

d
dx

u u
du
dx

sin cos=

d
dx

u
v

v u

v

du
dx

dv
dx



 =

−
2

d
dx

uv u
dv
dx

v
du
dx

( ) = +

d
dx

u v
d
dx

u
d
dx

v
d
dx

u v
d
dx

u
d
dx

v( ) ; ( )+ = + − = − 

d
dx

u au du
dx

d
dx

xa a n= −1 (the Power Rule); == −nxn 1

d
dx

au a
du
dx

=

da
dx

= 0

d y
dx

2

2

Product rule

Quotient rule
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(18)

(19)

(20)

(21)

C. THE CHAIN RULE;THE DERIVATIVE OF A 
COMPOSITE FUNCTION

Formula (3) on page 113 says that

.

This formula is an application of the Chain Rule. For example, if we use formula (3) to
find the derivative of (x2 – x + 2)4, we get

.

In this last equation, if we let y = (x2 – x + 2)4 and let u = x2 – x + 2, then y = u4. The pre-
ceding derivative now suggests one form of the Chain Rule:

as before. Formula (3) on page 113 gives the general case where y = un and u is a differ-
entiable function of x.

Now suppose we think of y as the composite function f(g(x)), where y = f(u) and 
u = g(x) are differentiable functions. Then

as we obtained above. The Chain Rule tells us how to differentiate the composite func-
tion: “Find the derivative of the ‘outside’ function first, then multiply by the derivative of
the ‘inside’ one.”

For example:

,

,

,
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+
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+
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Chain rule

7_3679_APCalc_05Chapter3A  10/3/08  4:21 PM  Page 114



Differentiation 115

,

.

Many of the formulas listed above in §B and most of the illustrative examples that fol-
low use the Chain Rule. Often the chain rule is used more than once in finding a derivative.

Note that the algebraic simplifications that follow are included only for completeness.

EXAMPLE 1
If y = 4x3 – 5x + 7, find y!(1) and y ″(1).

Then y!(1) = 12 · 12 – 5 = 7 and y ″(1) = 24 · 1 = 24.

EXAMPLE 2
If f(x) = (3x + 2)5, then f !(x) = 5(3x + 2)4 • 3 = 15(3x + 2)4.

EXAMPLE 3
If , then and

.

EXAMPLE 4

If y = , then and

.

EXAMPLE 5
If s(t) = (t2 + 1)(1 – t)2, then (using the Product Rule):

s!(t) = (t2 + 1) • 2(1 – t)(–1) + (1 – t)2 • 2t
= 2(1 – t)(–1 + t – 2t2).

EXAMPLE 6
If f(t) = e2t sin 3t, find f !(0).

Then, f !(0) = 1(3 • 1 + 2 • 0) = 3.                             

′ = +
= +

f t e t t e

e t t

t t

t

( ) (cos ) sin ( )

( cos sin )

• •
2 2

2

3 3 3 2

3 3 2 3

15
1 2 5

2

x
x( )−

( ) ( )1 22 5
2− − =−x xdy

dx
= −15

2

y x= − −5 1 2 3
2( )

5

1 2 3( )− x
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− −

1 2

2 3 2

x

x x
( ) ( )3 1 22 1

2− − − − =−x x xdy
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x y
d y
dx

x12 5 242
2
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(Product Rule)
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EXAMPLE 7
If f(v) = , then (using the Quotient Rule):

.

Note that neither f (v) nor f !(v) exists where the denominator equals zero, 

namely, where 1 – 2v2 = 0 or where v equals .

EXAMPLE 8
If f(x) = , x | 0, then

. 

EXAMPLE 9
If y = tan (2x2 + 1), then

.

EXAMPLE 10
If x = cos3 (1 – 3q), then

EXAMPLE 11
If , then

.

EXAMPLE 12
If y = (x + 1)ln2(x + 1), then (using both Product and Chain Rules),

dy
dx

x
x

x
x x x= + +

+
+ + = + + +( )

ln ( )
ln ( ) ln ( ) ln ( ).1

2 1
1

1 2 1 12 2

dy
dx

x e x= +cos •
(sin ) 1
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θ θ

θ θ
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3 1 3 1 3 3

9 1 3 1 3

2

2
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′ = +y x x4 2 12 2sec ( )
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f x

x x x x
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2

4 3

2 2
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± 2
2
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−
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f v
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v
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( ) (– )
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•1 2 2 2 4
1 2
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2

2 2
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2 2

2
1 2 2

v
v−
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EXAMPLE 13
If 

Then 

EXAMPLE 14
If y = sin–1 x + then

EXAMPLE 15
If u = ln , then u = ln (v2 + 2v – 1) and

.

EXAMPLE 16
If s = e–t(sin t – cos t), then

EXAMPLE 17
Let y = 2u3 – 4u2 + 5u – 3 and u = x2 – x. Then

EXAMPLE 18
If y = sin (ax + b), with a and b constants, then

.
dy
dx

ax b a a ax b= + = +[cos( )] cos( )•
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EXAMPLE 19
If f(x) = aekx (with a and k constants), then

EXAMPLE 20
Also, if y = ln (kx), where k is a constant, we can use both formula (13), page 113,
and the Chain Rule to get

Alternatively, we can rewrite the given function using a property of logarithms:
ln (kx) = ln k + ln x. Then

as before.

EXAMPLE 21
If f(u) = u2 – u and u = g(x) = x3 – 5, we can let F(x) = f(g(x)) and evaluate F!(2)
as follows:

.

Then we note, since g!(x) = 3x2, that g!(2) = 12, and, since f!(u) = 2u – 1, that
f!(3) = 5.

Of course, we get exactly the same answer as follows.
Since F(x) = (x3 – 5)2 – (x3 – 5), 

D. DIFFERENTIABILITY AND CONTINUITY
If a function f has a derivative at x = c, then f is continuous at x = c.

This statement is an immediate consequence of the definition of the derivative of
f !(c) in the form

.

If f !(c) exists, then it follows that , which guarantees that f is continuous

at x = c.
If f is differentiable at c, its graph cannot have a hole or jump at c, nor can x = c be

a vertical asymptote of the graph. The tangent to the graph of f cannot be vertical at x = c;
there cannot be a corner or cusp at x = c.

Each of the “prohibitions” in the preceding paragraph (each “cannot”) tells how a function
may fail to have a derivative at c. These cases are illustrated in Figures N3–2 (a) through (f).
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x c

f x f c
→

=

′ = −
−→

f c
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1 1
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′ = ′′ =f x kae f k aekx kx( ) .     and     2
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FIGURE N3–2

The graph in (e) is for the absolute function, f(x) = !x!. Since f !(x) = –1 for all nega-
tive x but f !(x) = +1 for all positive x, f !(0) does not exist.

We may conclude from the preceding discussion that, although differentiability
implies continuity, the converse is false. The functions in (d), (e), and (f ) in Figure N3–2
are all continuous at x = 0, but not one of them is differentiable at the origin.

E. ESTIMATING A DERIVATIVE

E1. Numerically.

EXAMPLE 22
The table shown gives the temperatures of a polar bear on a very cold arctic day
(t = minutes; T = degrees Fahrenheit):

t 0 1 2 3 4 5 6 7 8
T 98 94.95 93.06 91.90 91.17 90.73 90.45 90.28 90.17

x

f(x)

0 c x

f(x)

0 c x

f(x)

c

x

f(x)

c x

f(x)

c

(d) (e) (f)

(b)(a) (c)
The graph of f has a hole
(a removable discontinuity) at c.

The graph of f has a jump
(discontinuity) at c.

x = c is a vertical asymptote
of the graph of f.

The graph of f has a vertical
tangent at c.

There is a corner at x = c. There is a cusp at x = c.

f(x)

c x
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Our task is to estimate the derivative of T numerically at various times. A possible
graph of T(t) is sketched in Figure N3–3, but we shall use only the data from the
table.

FIGURE N3–3

Using the difference quotient with h equal to 1, we see that

.

Also,                                                                                   

and so on.
The following table shows the approximate values of T!(t) obtained from

the difference quotients above:

t 0 1 2 3 4 5 6 7
T !(t) –3.05 –1.89 –1.16 –0.73 –0.47 –0.28 –0.17 –0.11

Note that the entries for T !(t) also represent the approximate slopes of the T
curve at times 0.5, 1.5, 2.5, and so on.
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From a Symmetric Difference Quotient
In Example 22 we approximated a derivative numerically from a table of values. We can
also estimate f !(a) numerically using the symmetric difference quotient, which is defined
as follows:

Note that the symmetric difference quotient is equal to

.

We see that it is just the average of two difference quotients. Many calculators use the sym-
metric difference quotient in finding derivatives. 

EXAMPLE 23
For the function f (x) = x4 we approximate f !(1) using the symmetric difference
quotient with h = 0.01:

The exact value of f !(1), of course, is 4.

The use of the symmetric difference quotient is particularly convenient
when, as is often the case, obtaining a derivative precisely (with formulas) is
cumbersome and an approximation is all that is needed for practical purposes.

A word of caution is in order. Sometimes a wrong result is obtained using
the symmetric difference quotient. On pages 118 and 119 we noted that f (x) = !x!
does not have a derivative at x = 0, since f !(x) = –1 for all x < 0 but f !(x) = 1 for
all x > 0. Our calculator (which uses the symmetric difference quotient) tells us
(incorrectly!) that f !(0) = 0. Note that, if f(x) = !x!, the symmetric difference quo-
tient gives 0 for f !(0) for every h | 0. If, for example, h = 0.01, then we get

,

which, as previously noted, is incorrect. The graph of the derivative of f(x) = |x|,
which we see in Figure N3–4, shows that f !(0) does not exist.

FIGURE N3–4
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E2. Graphically.
If we have the graph of a function f(x), we can use it to graph f !(x). We accomplish this
by estimating the slope of the graph of f(x) at enough points to assure a smooth curve for
f !(x). In Figure N3–5 we see the graph of y = f(x). Below it is a table of the approximate
slopes estimated from the graph.

FIGURE N3–5

x –3 –2.5 –2 –1.5 –1 0 0.5 1 1.5 2 2.5
f !(x) –6 –3 –0.5 1 2 2 1.5 0.5 –2 –4 –7

Figure N3–6 was obtained by plotting the points from the table of slopes above and
drawing a smooth curve through these points. The result is the graph of y = f !(x).

FIGURE N3–6

From the graphs above we can make the following observations:
(1) At the points where the slope of f (in Figure N3–5) equals 0, the graph of 

f ! (Figure N3–6) has x-intercepts: approximately x = –1.8 and x = 1.1. We’ve drawn 
horizontal broken lines at these points on the curve in Figure N3-5.

(2) On intervals where f , the derivative is . We see here that f

decreases for x < –1.8 (approximately) and for x > 1.1 (approximately), and that 
f increases for –1.8 < x < 1.1 (approximately). In Chapter 4 we discuss other behaviors 
of f that are reflected in the graph of f !.

positive
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decreases
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1 2
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F. DERIVATIVES OF PARAMETRICALLY DEFINED
FUNCTIONS
Parametric equations were defined on page 77.

If x = f(t) and y = g(t) are differentiable functions of t, then

.

EXAMPLE 24
If x = 2 sin q and y = cos 2q, then

.

Also,

.

EXAMPLE 25
Find the equation of the tangent to the curve in Example 24 for q = .

When q = , the slope of the tangent, , equals –2 sin = –1. Since 

x = 2 sin = 1 and y = cos (2 • ) = cos = , the equation is

.

EXAMPLE 26
Suppose two objects are moving in a plane during the time interval 0 # t # 4.
Their positions at time t are described by the parametric equations

x1 = 2t, y1 = 4t – t2 and x2 = t + 1, y2 = 4 – t.

(a) Find all collision points. Justify your answer.
(b) Use a calculator to help you sketch the paths of the objects, indicating the

direction in which each object travels.

y x y x− = − − = − +1
2

1 1
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2

( )    or    
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d
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d
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differentia-
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(a) Equating x1 and x2 yields t = 1. When t = 1, both y1 and y2 equal 3. So t = 1
yields a true collision point (not just an intersection point) at (2,3). (An intersection
point is any point that is on both curves, but not necessarily at the same time.)

(b) Using parametric mode, we graph both curves with t in [0,4], in the 
window [0,3] ¥ [0,5]. The calculator graph we obtain is shown in Figure N3–7.

FIGURE N3–7

We’ve inserted arrows to indicate the direction of motion.
If we draw the curves in simultaneous graphing mode, we can watch the

objects as they move, seeing that they do indeed pass through the intersection
point at the same time. 

G. IMPLICIT DIFFERENTIATION
When a functional relationship between x and y is defined by an equation of the form
F(x,y) = 0, we say that the equation defines y implicitly as a function of x. Some exam-
ples are x 2 + y 2 – 9 = 0, y 2 – 4x = 0, and cos (xy) = y 2 – 5 (which can be written 
as cos (xy) – y2 + 5 = 0). Sometimes two (or more) explicit functions are defined by F(x,y) = 0.
For example, x2 + y2 – 9 = 0 defines the two functions y1 = and y2 = , 
the upper and lower halves, respectively, of the circle centered at the origin with radius 3.
Each function is differentiable except at the points where x = 3 and x = –3.

Implicit differentiation is the technique we use to find a derivative when y is not
defined explicitly in terms of x but is differentiable.

In the following examples, we differentiate both sides with respect to x, using
appropriate formulas, and then solve for .

EXAMPLE 27
If x 2 + y2 – 9 = 0, then

Note that the derivative above holds for every point on the circle, and exists for
all y different from 0 (where the tangents to the circle are vertical).

2 2 0x y
dy
dx

dy
dx

x
y

+ = = −     and     .

dy
dx

− −9 2x+ −9 2x

BC ONLY
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EXAMPLE 28
If x2 – 2xy + 3y2 = 2, then

,

so
.

EXAMPLE 29
If x sin y = cos (x + y), then

,

so

.

EXAMPLE 30
Find and using implicit differentiation on the equation x2 + y2 = 1.

. (1)

Then

(2)

, (3)

where we substituted for from (1) in (2), then used the given equation to

simplify in (3).
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f      

(a,b)

(b,a)

dx

dx

dy

dy

f –1

FIGURE N3–8

EXAMPLE 31
To verify the formula for the derivative of the inverse sine function, y = sin–1 x = 

arcsin x, with domain [–1,1] and range , we proceed as follows:

.

Now we differentiate with respect to x:

,

,

where we chose the positive sign for cos y since cos y is nonnegative if 
– < y < . Note that this derivative exists only if –1 < x < 1.

H. DERIVATIVE OF THE INVERSE OF A FUNCTION
Suppose f and g are inverse functions. What is the relationship between their derivatives?
Recall that the graphs of inverse functions are the reflections of each other in the line 
y = x, and that at corresponding points their x- and y-coordinates are interchanged.

Figure N3–8 shows a function f passing through point (a,b) and the line tangent to f
at that point. The slope of the curve there, f ¢(a), is represented by the ratio of the legs of 

the triangle, . When this figure is reflected across the line y = x, we obtain the graph 

of f –1, passing through point (b,a), with the horizontal and vertical sides of the slope 

dy
dx

π
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−

1 1

1

1

12 2cos sin
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dy
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,
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triangle interchanged. Note that the slope of the line tangent to the graph of f –1 at x = b

is represented by , the reciprocal of the slope of f at x = a. We have, therefore,

Simply put, the derivative of the inverse of a function at a point is the reciprocal of
the derivative of the function at the corresponding point.

EXAMPLE 32
If f(3) = 8 and f ¢(3) = 5, what do we know about f –1?

Since f passes through the point (3,8), f –1 must pass through the point
(8,3). Furthermore, since the graph of f has slope 5 at (3,8), the graph of f –1 must 

have slope at (8,3).

EXAMPLE 33
A function f and its derivative take on the values shown in the
table. If g is the inverse of f, find g¢(6).

To find the slope of g at the point where x = 6, we must
look at the point on f where y = 6, namely, (2,6). Since 

f ¢(2) = , g¢(6) = 3.

EXAMPLE 34
Let y = f(x) = x3 + x – 2, and let g be the inverse function. Evaluate g!(0).

Since f!(x) = 3x2 + 1, g!(y) = . To find x when y = 0, we must solve the

equation x3 + x – 2 = 0. Note by inspection that x = 1, so

.

EXAMPLE 35
To find where the tangent to the curve 4x2 + 9y2 = 36 is vertical, we differentiate 

the equation implicitly to get : 8x + 18y = 0, so = . Since the

tangent line to a curve is vertical when = 0, we conclude that must equal 

zero; that is, y must equal zero. When we substitute y = 0 in the original equation,
we get x = ±3. The points (±3,0) are the ends of the major axis of the ellipse, where
the tangents are indeed vertical.
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I. THE MEAN VALUE THEOREM
If the function f(x) is continuous at each point on the closed interval a ! x ! b and has a
derivative at each point on the open interval a < x < b, then there is at least one number 

c, a < c < b, such that = f "(c). This important theorem, which relates average  

rate of change and instantaneous rate of change, is illustrated in Figure N3–9. For the
function sketched in the figure there are two numbers, c1 and c2, between a and b where
the slope of the curve equals the slope of the chord PQ (i.e., where the tangent to the
curve is parallel to the secant line).

FIGURE N3–9

We will often refer to the Mean Value Theorem by its initials, MVT.
If, in addition to the hypotheses of the MVT, it is given that f (a) = f(b) = k, then

there is a number, c, between a and b such that f "(c) = 0. This special case of the MVT is
called Rolle’s Theorem, as seen in Figure N3–10f or k = 0.

FIGURE N3–10

The Mean Value Theorem is one of the most useful laws when properly applied.

x

y

y = f (x)

0 (a,0) (b,0)c

x

y

P

Q

0

(a, f (a))

(b, f (b))

c1 c2

f b f a
b a

( ) ( )−
−

Rolle’s
Theorem

Mean Value
Theorem
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EXAMPLE 36
You left home one morning and drove to a cousin’s house 300 miles away, arriv-
ing 6 hours later. What does the Mean Value Theorem say about your speed
along the way?

Your journey was continuous, with an average speed (the average rate of
change of distance traveled) given by 

Furthermore, the derivative (your instantaneous speed) existed everywhere along
your trip. The MVT, then, guarantees that at least at one point your instantaneous
speed was equal to your average speed for the entire 6-hour interval. Hence, your
car’s speedometer must have read exactly 50 mph at least once on your way to
your cousin’s house.

EXAMPLE 37
Demonstrate Rolle’s Theorem using f(x) = xsin x on the interval [0,π].

First, we check that the conditions of Rolle’s Theorem are met:

(1) f(x) = xsin x is continuous on [0,π] and exists for all x in [0,π].
(2) f !(x) = xcos x + sin x exists for all x in [0,π].
(3) f(0) = 0sin 0 = 0 and f(π) = πsinπ = 0.

Hence there must be a point, x = c, in the interval [0,π] where f !(c) = 0.
Using the calculator to solve x cos x + sin x = 0, we find c = 2.029 (to three deci-
mal places). As predicted by Rolle’s Theorem, 0 ≤ c ≤ π. 

Note that this result indicates that at x = c the line tangent to f is horizontal.
The MVT (here as Rolle’s Theorem) tells us that any function that is continuous
and differentiable must have at least one turning point between any two roots.

J.* INDETERMINATE FORMS AND L’HÔPITAL’S RULE
Limits of the following forms are called indeterminate:

or , 0 · h, h – h, 00, 1h, h0

To find the limit of an indeterminate form of the type or , we apply L’Hôpital’s 

Rule, which involves taking derivatives of the functions in the numerator and denomina-
tor. In the following, a is a finite number. The rule has several parts:

(a) If and if exists, then†

;

if does not exist, then L’Hôpital’s Rule cannot be applied.
′
′

f x
g x

( )
( )

lim
x a→

lim
( )
( )

lim
( )
( )x a x a

f x
g x

f x
g x→ →

= ′
′

′
′

f x
g x

( )
( )

lim
x a→

lim ( ) lim ( )
x a x a

f x g x
→ →

= = 0

∞
∞

0
0

∞
∞

0
0

∆
∆
distance

time
miles

6 hours
50 mph.= =

300

*Although this a required topic only for BC students, AB students will find L’Hôpital’s Rule very helpful.
†The limit can be finite or infinite (+h or –h).
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130 AP Calculus

(b) If , the same consequences follow as in case (a). The

rules in (a) and (b) both hold for one-sided limits.

(c) If and if exists, then

;

if does not exist, then L’Hôpital’s Rule cannot be applied. (Here the notation “x Æ h” 

represents either “x Æ +h” or “x Æ –h.”)

(d) If , the same consequences follow as in case (c).

In applying any of the above rules, if we obtain or again, we can apply the rule 

once more, repeating the process until the form we obtain is no longer indeterminate.

EXAMPLE 38
is of type and thus equals = 6. (Compare with Example 

12, pages 94 and 95.)

EXAMPLE 39
is of type and therefore equals = 1.

EXAMPLE 40
(Example 13, page 95) is of type and thus equals = –3, 

as before. Note that is not the limit of an indeterminate form!

EXAMPLE 41
is of type and therefore equals = 1.

EXAMPLE 42
(Example 20, page 96) is of type , so that it equals

, which is again of type . Apply L’Hôpital’s Rule twice more:

.

For this problem, it is easier and faster to apply the Rational Function Theorem!

lim lim
x x

x
x→∞ →∞

−
−

=
−

= −6 8
12

6
12

1
2

∞
∞

3 8
6 6

2

2

x x
x

−
− −lim

x→∞

∞
∞

x x
x x

3 2

3

4 7
3 6 2

− +
− −lim

x→∞

eh

1
lim
h→0

0
0

e
h

h –1lim
h→0

3
2

2x
x

lim
x→−2

3
2

2x
x

lim
x→−2

0
0

x
x

3

2

8
4

+
−

lim
x→−2

sec2

1
xlim

x→0

0
0

tan x
x

lim
x→0

2
1
xlim

x→3

0
0

x
x

2 9
3

−
−

lim
x→3

∞
∞

0
0

lim ( ) lim ( )
x x

f x g x
→∞ →∞

= = ∞

lim ( )
( )x

f x
g x→∞

′
′

lim
( )
( )

lim
( )
( )x x

f x
g x

f x
g x→∞ →∞

= ′
′

lim ( )
( )x

f x
g x→∞

′
′

lim ( ) lim ( )
x x

f x g x
→∞ →∞

= = 0

lim ( ) lim ( )
x a x a

f x g x
→ →

= = ∞BC ONLY
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EXAMPLE 43
is of type and equals = 0.

EXAMPLE 44
Don’t try to use L’Hôpital’s Rule when it does not apply. Consider this incorrect
result:

In fact, = 2. L’Hôpital’s Rule applies only to indeterminate forms 

and .  

L’Hôpital’s Rule can be applied also to indeterminate forms of the types 0 • h and h – h,

if the forms can be transformed to either or .

EXAMPLE 45
x sin is of the type h • 0. Since x sin = and, as x Æ h, the latter

is the indeterminate form , we see that

.

(Note the easier solution x sin = = 1.)

Other indeterminate forms, such as 00, 1h, and h0, may be resolved by taking the
natural logarithm and then applying L’Hôpital’s Rule.

EXAMPLE 46
is of type 1h. Let y = (1 + x)1/x, so that ln y = ln (1 + x). Then

ln y = , which is of type . Thus,

,

and since ln y = 1, y = e1 = e.lim
x→0

lim
x→0

lim ln lim
x x

y x
→ →

= + = =
0 0

1
1

1
1
1

1

0
0

ln ( )1 + x
x

lim
x→0

lim
x→0

1
x

lim( )
x

xx
→

+
0

11

sin 1

1
x

x

lim
x→∞

1
x

lim
x→∞

lim sin lim
cos

lim cos
x x x

x
x

x x

x
x→∞ →∞ →∞

=
−

−
= =1

1 1

1
1

1
2

2

0
0

sin /
/
1

1
x

x
1
x

1
x

lim
x→∞

∞
∞

0
0

∞
∞

0
0

lim
x

x

x→

+
+

=
2

3

2

8
4

16
8

lim lim
x x

x

x

x
x→ →

+
+

= =
2

3

2 2

28
4

3
2

3 (WRONG!)

1
1
/ xlim

x→∞

∞
∞

ln x
x

lim
x→∞
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EXAMPLE 47
is of type h0. Let y = x1/x, so that ln y = ln x = (which, as x Æ h,  

is of type ). Then ln y = = 0, and y = e0 = 1.

For more practice, redo the Practice Exercises on pages 102–107, applying
L’Hôpital’s Rule wherever possible.

K. RECOGNIZING A GIVEN LIMIT AS A DERIVATIVE
It is often extremely useful to evaluate a limit by recognizing that it is merely an expres-
sion for the definition of the derivative of a specific function (often at a specific point).
The relevant definition is the limit of the difference quotient:

.

EXAMPLE 48
is the derivative of f (x) = x4 at the point where x = 2. Since  

f !(x) = 4x3, the value of the given limit is f !(2) = 4(23) = 32.

EXAMPLE 49
= f !(9), where f(x) = . The value of the limit is x –1/2 when 

x = 9, or .

EXAMPLE 50
= f !(2), where f(x) = . Verify that f !(2) = and compare 

with Example 17, page 95.

EXAMPLE 51
= f !(0), where f(x) = ex. The limit has value e0 or 1 (see also Example

41, on page 130).

EXAMPLE 52
is f !(0), where f(x) = sin x, because we can write

.

The answer is 1, since f !(x) = cos x and f !(0) = cos 0 = 1. Of course, we already
know that the given limit is the basic trigonometric limit with value 1. Also,
L’Hôpital’s Rule yields 1 as the answer immediately.

′ = + − =
→ →

f
x
x

x
xx x

( ) lim
sin( ) sin

lim
sin

0
0 0

0 0

sin x
x

lim
x→0

e
h

h − 1lim
h→0

− 1
4

1
x

1 1
2

1
2h h+

−



lim

h→0

1
6

1
2

x9 3+ −h
h

lim
h→0

( )2 24 4+ −h
h

lim
h→0

′ = + −
→

f c
f c h f c

hh
( ) lim

( ) ( )
0

lim
x→∞

1
1
/ x

lim
x→∞

∞
∞

ln x
x

1
x

lim
x

xx
→∞

1
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Chapter Summary
In this chapter we have reviewed differentiation. We’ve defined the derivative as the
instantaneous rate of change of a function, and looked at estimating derivatives using
tables and graphs. We’ve reviewed the formulas for derivatives of basic functions, as
well as the product, quotient, and chain rules. We’ve looked at derivatives of implicitly
defined functions and inverse functions, and reviewed two important theorems: Rolle’s
Theorem and the Mean Value Theorem.  

For BC Calculus students, we’ve reviewed derivatives of parametrically defined
functions and the use of L’Hopital’s Rule for evaluating limits of indeterminate forms.

Practice Exercises

Part A. Directions: Answer these questions without using your calculator.

In each of Questions 1–20 a function is given. Choose the alternative that is the
derivative, , of the function.

1. y = x5 tan x

(A) 5x4 tan x (B) x5 sec2 x (C) 5x4 sec2 x

(D) 5x4 + sec2 x (E) 5x4 tan x + x5 sec2 x

2. y = 

(A) (B) (C)

(D) (E)

3.

(A) (B) (C)

(D) (E)

4. y = 

(A) (B) (C)

(D) (E)
30

5 1 4( )x +− + −10
3

5 1 4 3( )x

−
+
6

5 1 4( )x− + −30 5 1 4( )x−
+

30
5 1 2( )x

2
5 1 3( )x +

2
3

3 2 3 2( )− x−
−
1

3 2x

− −( )3 2
3

3 2x−
−
1

3 2x
1

2 3 2− x

y x= −3 2

7 6
3 1 2

−
+

x
x( )

7
3 1 2( )x +

−
+
9

3 1 2( )x
6 5
3 1 2

x
x

−
+( )

−
+
7

3 1 2( )x

2
3 1

−
+
x

x

dy
dx
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5.

(A) (B) (C)

(D) (E)

6.

(A) (B) (C)

(D) (E)

7.

(A) (B) 4y(x + 1) (C)

(D) (E) none of these

8. y = 

(A) (B) (C)

(D) (E)

9. y = ln

(A) (B) (C)

(D) 0 (E)

10. y = tan–1

(A) (B) (C)

(D) (E)
2

42x +
1

2 2+ x

2

4 2− x

1

2 4 2− x
4

4 2+ x

x
2

e
e

x

x

−
−

2
1

−
−
1

1ex

1
1ex −

x
e

e

x

x−
− 1

e
e

x

x − 1

2 2

2
x x x x

x
cos sin

sin
+2 2

2
x x x x

x
cos sin

cos
+

2 2

2
x x x x

x
cos sin

cos
−− 2x

xsin
2x

xsin

x
x

2

cos

− +
+ −

x
x x

1
2 12 3 2( )

1

2 2 12x x+ −
x

y
+ 1

y x x= + −2 2 1

4 1
x x x

+1 1
4x x x

+

4 1
4

x
x x

−
x x− −+1 2 3 2x

x x
+ 1

1
2 x

y x= −2

2 21 3 1 2x x− −−2 2
21 3 1 2x x

− −

9
5

85 3 3 2x x−3 21 3 1 2x x− −−2 21 3 1 2x x− −

y x x= − −3 4 22 3 1 2
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11. y = ln (sec x + tan x)

(A) sec x (B) (C)

(D) (E)

12. y = 

(A) 0 (B) 1 (C)

(D) (E)

13. y = 

(A) (B) (C)

(D) (E)

14. y = sin

(A) (B) (C)

(D) (E) cos (ln x)

15. y = 

(A) –csc 2x cot 2x (B) (C) –4 csc 2x cot 2x

(D) (E) –csc2 2x

16. y = e–x cos 2x

(A) –e–x(cos 2x + 2 sin 2x)
(B) e–x(sin 2x – cos 2x)
(C) 2e–x sin 2x
(D) –e–x(cos 2x + sin 2x)
(E) –e–x sin 2x

cos
sin

2
2 2

x
x

1
4 2cos x

1
2 2sin x

− 



 + 





1 1 1 1
2x x x x

sin cos

− 





1 1
2x x

coscos −





1
2x

cos 1
x







1
x







2
12

x
x +

x
x2 1+

1
2 12x +( )

2
12

x
x +

1
12x +

ln x2 1+( )

1
2 2e ex x+ −

4
2( )e ex x+ −

2
2( )e ex x+ −

e e
e e

x x

x x
−
+

−

−

−
+
1

sec tanx x
1

sec tanx x+

tan
sec
tan

x
x
x

+
21

sec x
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17. y = sec2 (x)
(A) 2 sec x (B) 2 sec x tan x (C) 2 sec2 x tan x

(D) sec2 x tan2 x (E) tan x

18. y = x ln3 x

(A) (B) 3 ln2 x (C) 3x ln2 x + ln3 x

(D) 3(ln x + 1) (E) none of these

19. y = 

(A) (B) (C)

(D) (E)

20.

(A) (B) (C)

(D) (E)

In each of Questions 21–24, y is a differentiable function of x. Choose the alternative

that is the derivative .

21. x3 – y3 = 1

(A) x (B) 3x2 (C) (D) (E)

22. x + cos (x + y) = 0

(A) csc (x + y) – 1 (B) csc (x + y) (C)

(D) (E)

23. sin x – cos y – 2 = 0

(A) –cot x (B) –cot y (C)

(D) –csc y cos x (E)
2 − cos

sin
x

y

cos
sin

x
y

1 − sin
sin

x
y

1

1 2− x

x
x ysin ( )+

3 12

2
x
y

−x
y

2

23 23 x

dy
dx

1
1 + x

x

x

2

21 −

1

1 2

+
−

x

x

2

1 2− x

1

2 1 2− x

y x x= − −−sin 1 21

4
1 2− x

2
1 2

x
x−

–
( )

4
1

3

2 2

x
x−

4
1 2 2

x
x( )−

−
−
4

1 2 2

x
x( )

1
1

2

2
+
−

x
x

3 2ln x
x
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24. 3x2 – 2xy + 5y2 = 1

(A) (B) (C) 3x + 5y

(D) (E) none of these

25. If x = t2 + 1 and y = 2t3, then =

(A) 3t (B) 6t2 (C) (D) (E)

26. If f(x) = x4 – 4x3 + 4x2 – 1, then the set of values of x for which the derivative equals
zero is

(A) {1, 2} (B) {0, –1, –2} (C) {–1, +2}
(D) {0} (E) {0, 1, 2}

27. If f(x) = , then f !(4) is equal to

(A) –32 (B) –16 (C) –4 (D) –2 (E)

28. If f(x) = ln x3, then f !(3) is

(A) (B) –1 (C) –3 (D) 1 (E) none of these

29. If a point moves on the curve x2 + y2 = 25, then, at (0, 5), is

(A) 0 (B) (C) –5 (D) (E) nonexistent

30. If x = t2 – 1 and y = t4 – 2t3, then, when t = 1, is

(A) 1 (B) –1 (C) 0 (D) 3 (E)

31. If , which is closest to f "(1)?

(A) 0.016 (B) 1.0 (C) 5.0 (D) 8.0 (E) 32.0

32. If y = ex(x – 1), then y!(0) equals

(A) –2 (B) –1 (C) 0 (D) 1 (E) none of these

33. If x = eq cos q and y = eq sin q, then, when q = , is

(A) 1 (B) 0 (C) eU/2 (D) nonexistent (E) –1

dy
dx

π
2

 f x x( ) ..= 5 5 5 0161 002 and !

1
2

d y
dx

2

2

− 1
5

1
5

d y
dx

2

2

− 1
3

− 1
2

16 x

2 6
1

4 2

2 2
t t
t

+
+( )

6
1

2

2 2
t

t +( )
6

1

2

2
t

t +

dy
dx

3 4x y
x
+

y x
y x
−

−
3

5
3

5
x y

x y
+

−
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34. If x = cos t and y = cos 2t, then (sin t | 0) is

(A) 4 cos t (B) 4 (C) (D) –4 (E) –4 cot t

35. is

(A) 0 (B) 1 (C) 6 (D) h (E) nonexistent

36. is

(A) 0 (B) (C) 1 (D) 192 (E) h

37. is

(A) 0 (B) (C) 1 (D) e (E) nonexistent

38. is

(A) –1 (B) 0 (C) 1 (D) h (E) none of these

39. The function f(x) = x2/3 on [–8, 8] does not satisfy the conditions of the Mean Value
Theorem because

(A) f(0) is not defined (B) f(x) is not continuous on [–8, 8]
(C) f "(–1) does not exist (D) f(x) is not defined for x < 0
(E) f "(0) does not exist

40. If f(x) = 2x3 – 6x, at what point on the interval 0 # x # , if any, is the tangent to
the curve parallel to the secant line?

(A) 1 (B) –1 (C) (D) 0 (E) nowhere

41. If h is the inverse function of f and if f(x) = , then h"(3) =

(A) –9 (B) (C) (D) 3 (E) 9

42. equals

(A) 0 (B) 1 (C) (D) h (E) none of these

43. If sin (xy) = x, then =

(A) sec (xy) (B) (C)

(D) (E) sec (xy) – 1− +1 sec ( )xy
x

sec ( )xy y
x

−sec ( )xy
x

dy
dx

1
50!

e
x

x

50lim
x→∞

1
9

− 1
9

1
x

2

3

cos x
x

− 1lim
x→0

1
e

ln( )e h
h

+ − 1lim
h→0

1
12

8 23 + −h
h

lim
h→0

( )1 16+ −h
h

lim
h→0

4y
x

d y
dx

2

2
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44. is

(A) 1 (B) 2 (C) (D) 0 (E) h

45. is

(A) 1 (B) (C) (D) 0 (E) nonexistent

46. is

(A) nonexistent (B) 1 (C) 2 (D) h (E) none of these

47. is

(A) (B) 0 (C) 1 (D) U (E) h

48.

(A) is 1 (B) is 0 (C) is h
(D) oscillates between –1 and 1 (E) is none of these

49. The graph in the xy-plane represented by x = 3 + 2 sin t and y = 2 cos t – 1, for 
–U # t # U, is

(A) a semicircle (B) a circle (C) an ellipse
(D) half of an ellipse (E) a hyperbola

50. equals

(A) 0 (B) (C) 1 (D) 2 (E) none of these

In each of Questions 51–54 a pair of equations that represent a curve parametrically is 
given. Choose the alternative that is the derivative .

51. x = t – sin t and y = 1 – cos t

(A) (B) (C)

(D) (E)
1 −

−
cos
sin

t
t t

1 − x
y

sin
cos –

t
t 1

1 − cos
sin

t
t

sin
cos

t
t1 −

dy
dx

1
2

sec cosx x
x
−

2lim
x→0

lim sin
x

x
x→∞

2 1

1
π

tan πx
x

lim
x→0

1 − cos x
x

lim
x→0

3
4

4
3

sin
sin

3
4

x
x

lim
x→0

1
2

sin 2x
x

lim
x→0
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52. x = cos3 q and y = sin3 q

(A) tan3 q (B) –cot q (C) cot q (D) –tan q (E) –tan2 q

53. x = 1 – e–t and y = t + e–t

(A) (B) e–t – 1 (C) et + 1 (D) et – e–2t (E) et – 1

54. x = and y = 1 – ln(l – t) (t < 1)

(A) (B) t – 1 (C) (D) (E) 1 + ln x

Part B. Directions: Some of the following questions require the use of a graphing 
calculator.

In Questions 55–62, differentiable functions f and g have the values shown in the
table.

x f f " g g"
0 2 1 5 –4
1 3 2 3 –3
2 5 3 1 –2
3 10 4 0 –1

55. If A = f + 2g, then A"(3) =

(A) –2 (B) 2 (C) 7 (D) 8 (E) 10

56. If B = f • g, then B"(2) = 

(A) –20 (B) –7 (C) –6 (D) –1 (E) 13

57. If D = , then D"(1) = 

(A) (B) (C) (D) (E)

58. If , then H"(3) =

(A) (B) (C) 2 (D) (E)

59. If K(x) = (x), then K"(0) =

(A) (B) (C) (D) (E)
22
25

13
16

13
25

− 1
4

−13
25

f
g







4 10
2
10

1
2 10

1
4

H x f x( ) ( )=

1
3

1
9

− 1
9

− 1
3

− 1
2

1
g

( )1 2− t
t

1
x

1
1 − t

1
1 − t

e
e

t

t

−

−−1
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60. If M(x) = f(g(x)), then M"(1) =

(A) –12 (B) –6 (C) 4 (D) 6 (E) 12

61. If P(x) = f(x3), then P"(1) =

(A) 2 (B) 6 (C) 8 (D) 12 (E) 54

62. If S(x) = f –1(x), then S"(3) =

(A) –2 (B) (C) (D) (E) 2

63. The graph of g" is shown here. Which 
of the following statements is (are) true 
of g at x = a?

I. g is continuous.
II. g is differentiable.

III. g is increasing.

(A) I only (B) III only (C) I and III only
(D) II and III only (E) I, II, and III

64. A function f has the derivative shown. 
Which of the following statements 
must be false?

(A) f is continuous at x = a.
(B) f(a) = 0.
(C) f has a vertical asymptote at x = a.
(D) f has a jump discontinuity at x = a.
(E) f has a removable discontinuity 

at x = a.

65. The function f whose graph is 
shown has f " = 0 at x =

(A) 2 only
(B) 2 and 5
(C) 4 and 7
(D) 2, 4, and 7
(E) 2, 4, 5, and 7

x

y

f

0 1 2 3 5 6 74

f ′

x

y

a

x

y

a

g′

1
2

1
4

− 1
25
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66. A differentiable function f has the values shown. Estimate f !(1.5).

x 1.0 1.2 1.4 1.6
f (x) 8 10 14 22

(A) 8 (B) 12 (C) 18 (D) 40 (E) 80

67. Water is poured into a conical reservoir at 
a constant rate. If h(t) is the rate of change 
of the depth of the water, then h is

(A) constant
(B) linear and increasing
(C) linear and decreasing
(D) nonlinear and increasing
(E) nonlinear and decreasing

Use the figure to answer Questions 
68–70. The graph of f consists of two 
line segments and a semicircle.

68. f !(x) = 0 for x = 

(A) 1 only
(B) 2 only
(C) 4 only
(D) 1 and 4
(E) 2 and 6

69. f !(x) does not exist for x =

(A) 1 only (B) 2 only (C) 1 and 2
(D) 2 and 6 (E) 1, 2, and 6

70. f !(5) =

(A) (B) (C) 1 (D) 2 (E)

71. At how many points on the interval [–5,5] is a tangent to y = x + cos x parallel to
the secant line?

(A) none (B) 1 (C) 2 (D) 3 (E) more than 3

72. From the values of f shown, estimate f !(2).

x 1.92 1.94 1.96 1.98 2.00
f (x) 6.00 5.00 4.40 4.10 4.00

(A) –0.10 (B) –0.20 (C) –5 (D) –10 (E) –25

3
1
3

1
2

x

y

1 2 3 4 5 6

f
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73. Using the values shown in the table for Question 72, estimate ( f –1)¢(4).

(A) –0.2 (B) –0.1 (C) –5 (D) –10 (E) –25

74. The “left half” of the parabola defined by y = x2 – 8x +10 for x f 4 is a one-to-one
function; therefore its inverse is also a function. Call that inverse g. Find g¢(3).

(A) (B) (C) (D) (E)

75. The table below shows some points on a function f that is both continuous and 
differentiable on the closed interval [2,10].

x 2 4 6 8 10
f(x) 30 25 20 25 30

Which must be true?

(A) f (x) > 0 for 2 < x < 10
(B) f ¢(6) = 0
(C) f ¢(8) > 0
(D) The maximum value of f on the interval [2,10] is 30.
(E) For some value of x on the interval [2,10]  f ¢(x) = 0.

76. If f is differentiable and difference quotients overestimate the slope of f at x = a for
all h > 0, which must be true?

(A) f "(a) > 0 (B) f "(a) < 0 (C) f ≤(a) > 0
(D) f ≤(a) < 0 (E) none of these

77. If f(u) = sin u and u = g(x) = x2 – 9, then ( f ° g)"(3) equals

(A) 0 (B) 1 (C) 6 (D) 9 (E) none of these

78. If f(x) = , then the set of x’s for which f "(x) exists is

(A) all reals
(B) all reals except x = 1 and x = –1
(C) all reals except x = –1

(D) all reals except x = and x = –1

(E) all reals except x = 1

79. If , then the derivative of y2 with respect to x2 is

(A) 1 (B) (C) (D) (E)
x

x

2

2 1+
2
x

x
x2 12( )+

x
x

2 1
2

+

y x= +2 1

1
3

x
x( )− 1 2

11
2

1
2

1
6

− 1
6

− 1
2
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80. If y = x2 + x, then the derivative of y with respect to is

(A) (2x + 1)(x – 1)2 (B) (C) 2x + 1

(D) (E) none of these

81. If f(x) = and g(x) = , then the derivative of f(g(x)) is

(A) (B) –(x + 1)–2 (C)

(D) (E)

82. If f(a) = f(b) = 0 and f(x) is continuous on [a, b], then

(A) f(x) must be identically zero
(B) f "(x) may be different from zero for all x on [a, b]
(C) there exists at least one number c, a < c < b, such that f "(c) = 0
(D) f "(x) must exist for every x on (a, b)
(E) none of the preceding is true

83. Suppose y = f(x) = 2x3 – 3x. If h(x) is the inverse function of f, then h"(–1) =

(A) –1 (B) (C) (D) 1 (E) 3

84. Suppose f (1) = 2, f ¢(1) = 3, and f ¢(2) = 4. Then ( f –1)¢(2)

(A) equals (B) equals (C) equals

(D) equals (E) cannot be determined

85. If f(x) = x3 – 3x2 + 8x + 5 and g(x) = f –1(x), then g¢(5) =

(A) 8 (B) (C) 1 (D) (E) 53

86. Suppose = 1. It follows necessarily that

(A) g is not defined at x = 0
(B) g is not continuous at x = 0
(C) the limit of g(x) as x approaches 0 equals 1
(D) g"(0) = 1
(E) g"(1) = 0

g x g
x

( ) ( )− 0lim
x→0

1
53

1
8

1
3

1
4

− 1
4

− 1
3

1
3

1
5

1
2 1x x( )+

1
1 2( )x +

−
+
2

12 2

x
x( )

−
+

x
x( )2 21

x
1

12x +

3
1 3

−
−

x
x( )

2 1
1 2

x
x

+
−( )

1
1 − x
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Use this graph of y = f(x) for Questions 87 and 88.

87. f "(3) is most closely approximated by

(A) 0.3 (B) 0.8 (C) 1.5 (D) 1.8 (E) 2

88. The rate of change of f(x) is least at x !

(A) –3 (B) –1.3 (C) 0 (D) 0.7 (E) 2.7

Use the following definition of the symmetric difference quotient for f "(x0) for
Questions 89–91: For small values of h,

.

89. For f(x) = 5x, what is the estimate of f ¢(2) obtained by using the symmetric differ-
ence quotient with h = 0.03?

(A) 25.029 (B) 40.236 (C) 40.252 (D) 41.223 (E) 80.503

90. To how many places is the symmetric difference quotient accurate when it is used to
approximate f "(0) for f(x) = 4x and h = 0.08?

(A) 1 (B) 2 (C) 3 (D) 4 (E) more than 4

91. To how many places is f "(x0) accurate when it is used to approximate f "(0) for 
f(x) = 4x and h = 0.001?

(A) 1 (B) 2 (C) 3 (D) 4 (E) more than 4

′ = + − −
f x

f x h f x h
h

( )
( ) ( )

0
0 0

2

–1 0 2 3 41
x

y

1

2

3

–1

–2

–3
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92. The value of f "(0) obtained using the symmetric difference quotient with f(x) = "x"
and h = 0.001 is

(A) –1 (B) 0 (C) ±1 (D) 1 (E) indeterminate

93. If f(x) = g(x) and h(x) = sin x, then f(h(x)) equals

(A) g(sin x) (B) cos x • g(x) (C) g"(x)

(D) cos x • g (sin x) (E) sin x • g(sin x)

94. Let f(x) = 3x – x3. The tangent to the curve is parallel to the secant through (0,1) and
(3,0) for x =

(A) 0.984 only (B) 1.244 only (C) 2.727 only

(D) 0.984 and 2.804 only (E) 1.244 and 2.727 only

Questions 95–99 are based on the following graph of f(x), sketched on –6 # x # 7.
Assume the horizontal and vertical grid lines are equally spaced at unit intervals.

95. On the interval 1 < x < 2, f(x) equals

(A) –x – 2 (B) –x – 3 (C) –x – 4 (D) –x + 2 (E) x – 2

96. Over which of the following intervals does f "(x) equal zero?

I. (–6,–3) II. (–3,–1) III. (2,5)

(A) I only (B) II only (C) I and II only
(D) I and III only (E) II and III only

3

2

1

–1
–6 –5 –4 –3 –2 –1 1 2 3 4 5 6 7

–2

–3

–4

0
x

y = f (x)

d
dx

d
dx
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97. How many points of discontinuity does f "(x) have on the interval –6 < x < 7?

(A) none (B) 2 (C) 3 (D) 4 (E) 5

98. For –6 < x < –3, f "(x) equals

(A) (B) –1 (C) 1 (D) (E) 2

99. Which of the following statements about the graph of f "(x) is false?

(A) It consists of six horizontal segments.
(B) It has four jump discontinuities.
(C) f "(x) is discontinuous at each x in the set {–3,–1,1,2,5}.
(D) f "(x) ranges from –3 to 2.
(E) On the interval –1 < x < 1, f "(x) = –3.

100. The table gives the values of a function f that is differentiable on the interval [0,1]:

x 0.10 0.20 0.30 0.40 0.50 0.60
f(x) 0.171 0.288 0.357 0.384 0.375 0.336

According to this table, the best approximation of f "(0.10) is

(A) 0.12 (B) 1.08 (C) 1.17 (D) 1.77 (E) 2.88

101. At how many points on the interval [a,b] does the function graphed satisfy the Mean
Value Theorem?

(A) none (B) 1 (C) 2 (D) 3 (E) 4

x

y

a b

f

•

•

3
2

− 3
2
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Answer Key
1. E 22. A 42. D 62. D 82. B
2. A 23. D 43. C 63. E 83. C
3. B 24. B 44. B 64. C 84. D
4. B 25. A 45. C 65. A 85. B
5. E 26. E 46. E 66. D 86. D
6. D 27. E 47. D 67. E 87. B
7. A 28. A 48. C 68. C 88. D
8. D 29. D 49. B 69. E 89. C
9. C 30. E 50. C 70. B 90. B

10. E 31. D 51. A 71. D 91. E
11. A 32. D 52. D 72. C 92. B
12. D 33. E 53. E 73. A 93. D
13. D 34. B 54. C 74. B 94. E
14. C 35. C 55. B 75. E 95. A
15. A 36. B 56. B 76. C 96. E
16. A 37. B 57. E 77. C 97. E
17. C 38. B 58. D 78. E 98. D
18. E 39. E 59. C 79. A 99. B
19. B 40. A 60. A 80. A 100. C
20. C 41. B 61. B 81. B 101. D
21. D

Answers Explained
Many of the explanations provided include intermediate steps that would normally be
reached on the way to a final algebraically simplified result. You may not need to reach
the final answer.

NOTE: the formulas or rules cited in parentheses in the explanations are given on
pages 113 and 114.

1. (E) By the Product Rule, (5),

y" = x5(tan x)" + (x5)" (tan x).

2. (A) By the Quotient Rule, (6),            

3. (B) Since y = (3 – 2x)1/2, by the Power Rule, (3),

4. (B) Since 

5. (E) x–1/2

6. (D) Rewrite: , so .′ = +− −y x x1 2 3 21
4

y x x= −2 1 2 1 21
2

′ = ( ) − ( )−y x3 42
3

1
2

1 3

y x y x= + ′ = − +− −2 5 1 6 5 1 53 4( ) , ( ) ( ).

′ = − − = −
−

−y x
x

1
2

3 3 2
1

3 2
1 2( ) ( ) .•

 
¢ = + - - -

+
= -

+
y

x x
x x

( )( ) ( )( )
( ) ( )

.
3 1 1 2 3

3 1
7

3 12 2
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7. (A) Rewrite: y = (x2 + 2x – 1)1/2; then y = (x2 + 2x – 1)–1/2(2x + 2)

8. (D) Use the Quotient Rule:

9. (C) Since                          

.

then

10. (E) Use formula (18): y" = .

11. (A) Use formulas (13), (11), and (9):

12. (D) By the Quotient Rule,

.

13. (D) Since y = ln (x2 + 1),

• .

14. (C) y " = sin" · = cos · 

15. (A) Since y = csc 2x, y" = (–csc 2x cot 2x • 2).

16. (A)

17. (C) y" = (2 sec x)(sec x tan x)

18. (E) y" = + ln3 x. The correct answer is 3 ln2 x + ln3 x.

19. (B) y" = .

20. (C) y" = .
1

1

1 2

2 12 2−
− −

−x

x

x

• ( )

( )( ) ( )( )
( )

1 2 1 2
1

2 2

2 2

− − + −
−

x x x x
x

x x
x

( ln )3 2

′ = − + −− −y e x x ex x( sin ) cos ( ).2 2 2

1
2

1
2

−





1
2x

1
x







1
x







′1
x







2
12

x
x +

′ =y 1
2

1
2

′ = + + − − −
+

= + + − − +
+

=
+

− − −

−

− −

− −

y
e e e e e e e e

e e

e e e e
e e e e

x x x x x x x x

x x

x x x x

x x x x

( )( ) ( )( )
( )

( ) ( )
( ) ( )

–

2

2 2 2 2

2 2

2 2 4

′ = +
+

= +
+

y
x x x

x x
x x x

x x
sec tan sec

sec tan
sec (tan sec )

sec tan
.

2

1
2

1
4

2
+ x

′ = −
−

= − −
−

= −
−

y
e

e
e e

e e

x

x

x x

x x1
1

1
1

1
1

.

 

y e e

x e

x x

x

= - -
= - -

ln ln( )

ln( ),

1

1

′ = − −
y

x x x x
x

2 2

2

cos ( sin )
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1
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21. (D) Let y" be ; then .

22. (A) 1 – sin (x + y)(1 + y") = 0; = y".

23. (D) cos x + sin y • y" = 0; y" = .

24. (B)

25. (A)

26. (E) f "(x) = 4x3 – 12x2 + 8x = 4x(x – 1)(x – 2).

27. (E) f "(x) = 8x –1/2; f !(x) = –4x –3/2 = – ; f !(4) = – .

28. (A) f(x) = 3 ln x; f "(x) = ; f !(x) = . Replace x by 3.

29. (D) ; . At (0,5), .

30. (E) = 2t2 – 3t (t | 0); . Replace t by 1.

31. (D) f "(1) ! .

32. (D) y" = ex • 1 + ex(x – 1) = xex;
y ! = xex + ex and y !(0) = 0 • 1 + 1 = 1.

33. (E) When simplified, .

34. (B) Since (if sin t | 0)

and 

then Thus:

.

NOTE: Since each of the limits in Questions 35–39 yields an indeterminate form of the type

, we can apply L’Hôpital’s Rule in each case, getting identical answers.

35. (C) The given limit is the derivative of f(x) = x6 at x = 1.

36. (B) The given limit is the definition for f "(8), where ;

.′ =f x
x

( )
1

3 2 3

f x x( ) = 3

0
0

d y
dx

t
t

2

2

4= −
−

sin
sin

dy
dx

t= 4 cos .

dx
dt

t= − sin ,
dy
dt

t t t= − = −2 2 4sin sin cos

dy
dx

= +
−

cos sin
cos sin

θ θ
θ θ

5 5
0 002

5 016 5
0 002

1 002 1.

.
.

.
− −=

d y
dx

t
t

2

2

4 3
2

= −dy
dx

t t
t

= −4 6
2

3 2

′′ = − −y 5 0
25

′′ = − − ′y y xy
y2

x
y

2 2 0x yy y+ ′ = ′ = −;

−3
2x

3
x

4
8

4
3 2x

dy
dx

dy dt
dx dt

t
t

= =/
/

6
2

2

6 2 10 0 10 2 2 6x xy y yy y y x y x− ′ + + ′ = ′ − = −( ) ; ( ) .

− cos
sin

x
y

1 − +
+

sin( )
sin( )

x y
x y

3 3 0 3
3

2 2
2

2x y y y x
y

− ′ = ′ = −
−

;dy
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37. (B) The given limit is f "(e), where f(x) = ln x.

38. (B) The given limit is the derivative of f(x) = cos x at x = 0; f "(x) = – sin x.

39. (E) Since f "(x) = , f "(0) is not defined; f "(x) must be defined on (–8,8).

40. (A) Note that f(0) = = 0 and that f "(x) exists on the given interval. By 
the MVT, there is a number, c, in the interval such that f ′(c) = 0. If c = 1,
then 6c2 – 6 = 0. (–1 is not in the interval.)

41. (B) Since the inverse, h, of f(x) = is h(x) = , then h"(x) = – . Replace x
by 3.

42. (D) After 50(!) applications of L’Hôpital’s Rule we get , which “equals”

h. A perfunctory examination of the limit, however, shows immediately that
the answer is h. In fact, for any positive integer n, no matter how 

large, is h.

43. (C)

.

NOTE:  In Questions 44–48 the limits are all indeterminate forms of the type . We have 

therefore applied L’Hôpital’s Rule in each one. The indeterminacy can also be resolved by 

introducing , which approaches 1 as a approaches 0. The latter technique is presented 

in square brackets.

44. (B) = 

[Using sin 2x = 2 sin x cos x yields 2 cos x = 2 • 1 • 1 = 2.]

45. (C) = .

[We rewrite as . As x Æ 0, so do 3x and 4x; the frac-

tion approaches 1 • 1 • .]

46. (E) = = 0.

[We can replace 1 – cos x by 2 sin2 , getting 

= = sin = 0 • 1.]
sin

x

x
2

2















x
2

lim
x→0

sin2

2

2

x

xlim
x→0

2
2

2sin
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x
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1
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1 − cos x
x
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3
4
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sin

• •
3

3
4

4
3
4

x
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x
x

sin
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3
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x
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3 3
4 4

3 1
4 1

3
4
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•
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= =lim
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sin
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3
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x

lim
x→0
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x→0

2 2
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2 1
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.
x = =•lim

x→0

sin 2x
x

lim
x→0

sin a
a

0
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′ = −
y

y xy
x xy

1 cos( )
cos( )

cos ; cos cos ;xy xy y x xy y y xy( ) ′ +( ) = ( ) ′ = − ( )1 1

e
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n
lim
x→∞
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lim
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47. (D) = = 1 • U = U.

[ U • ; as x (or Ux) approaches 0, the original

fraction approaches U • 1 • = U.]

48. (C) The limit is easiest to obtain here if we rewrite: 

x2 sin = x = h • 1 = h.

49. (B) Since x – 3 = 2 sin t and y + 1 = 2 cos t, 

(x – 3)2 + (y + 1)2 = 4.

This is the equation of a circle with center at (3,–1) and radius 2. In the
domain given, –U # t # U, the entire circle is traced by a particle moving
counterclockwise, starting from and returning to (3, –3).

50. (C) Use L’Hôpital’s Rule; then

51. (A) .

52. (D) .

53. (E) = et – 1.

54. (C) Since and , then

55. (B)

56. (B) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )• • •f g f g g f′ = ′ + ′ = − +2 2 2 2 2 5 2 1 3

( ) ( ) ( ) ( ) ( )f g f g+ ′ = ′ + ′ = + −2 3 3 2 3 4 2 1
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57. (E)

58. (D)

59. (C)

60. (A)

61. (B) .

62. (D) f(S(x)) = x implies that , so

.

63. (E) Since g"(a) exists, g is differentiable and thus continuous; g"(a) > 0.

64. (C) Near a vertical asymptote the slopes must approach ±h.

65. (A) There is only one horizontal tangent.

66. (D) Use the symmetric difference quotient; then

.

67. (E) Since the water level rises more slowly as the cone fills, the rate of depth
change is decreasing, as in (C) and (E). However, at every instant the por-
tion of the cone containing water is similar to the entire cone; the volume
is proportional to the cube of the depth of the water. The rate of change of
depth (the derivative) is therefore not linear, as in (C).

68. (C) The only horizontal tangent is at x = 4. Note that f "(1) does not exist.

69. (E) The graph has corners at x = 1 and x = 2; the tangent line is vertical at x = 6.

70. (B) Consider triangle ABC: AB = 1; radius AC = 2; thus, BC = and AC has
m = – . The tangent line is perpendicular to the radius.
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′ ′ =f S x S x( ( ) ( )• 1

[ ( )] ( ) , ( ) ( )• • • •f x f x x P f3 3 2 3 23 1 1 3 1 2 3′ = ′ ′ = ′ = so 
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71. (D) The graph of y = x + cos x is shown in window [–5,5] ¥ [–6,6]. The average
rate of change is represented by the slope of secant segment . There
appear to be 3 points at which tangent lines are parallel to .

72. (C) f "(2) ! 

73. (A) Since an estimate of the answer for Question 72 is f ¢(2) ª –5, then 

74. (B) When x = 3 on g–1, y = 3 on the original half-parabola. 3 = x2 – 8x + 10 at 
x = 1 (and at x = 7, but that value is not in the given domain). 

75. (E) f satisfies Rolle’s Theorem on [2,10].

76. (C) The diagrams show secant lines (whose slope is the difference quotient) 
with greater slopes than the tangent line. In both cases, f is concave 
upward.

f

f

a a + h a a + h

′( ) =
′( ) =

−
= −

=
g

y x x

3
1
1

1
2 8

1
61

.

f
f

−( )′ ( ) =
′( ) ≈
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= −1 4

1
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−
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77. (C) ( f ° g)! at x = 3 equals f !(g(3)) • g!(3) equals cos u (at u = 0) times 2x
(at x = 3) = 1 • 6 = 6.

78. (E) Here f !(x) equals .

79. (A) . Since y2 = x2 + 1, .

80. (A) .

81. (B) Note that f (g(x)) = .

82. (B) Sketch the graph of f (x) = 1 – !x!; note that f (–1) = f(1) = 0 and that f is
continuous on [–1,1]. Only (B) holds.

83. (C) Since f !(x) = 6x2 – 3, therefore h!(x) = ; also, f (x), or 2x3 – 3x, 

equals –1, by observation, for x = 1. So h!(–1) or (when x = 1) 

equals .

84. (D) .

85. (B) Since f (0) = 5, .

86. (D) The given limit is the derivative of g(x) at x = 0.

87. (B) The tangent line appears to contain (3,–2.6) and (4,–1.8).

88. (D) f !(x) is least at the point of inflection of the curve, at about 0.7.

89. (C)

90. (B) By calculator, f !(0) = 1.386294805 and = 1.3891 . . . .

91. (E) Now = 1.386294805.4 4
0 002
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92. (B) Note that any line determined by two points equidistant from the origin will
necessarily be horizontal.

93. (D) Note that 

94. (E) Since f(x) = 3x – x3, then f "(x) = 3x ln 3 – 3x2. Furthermore, f is continuous on
[0,3] and f " is differentiable on (0,3), so the MVT applies. We therefore seek 

c such that f "(c) = . Solving 3x ln x – 3x2 = – with a  

calculator, we find that c may be either 1.244 or 2.727. These values are
the x-coordinates of points on the graph of f (x) at which the tangents 
are parallel to the secant through points (0,1) and (3,0) on the curve.

95. (A) The line segment passes through (1,–3) and (2,–4).

Use the graph of f "(x), shown above, for Questions 96–99.

96. (E) f "(x) = 0 when the slope of f(x) is 0; that is, when the graph of f is a 
horizontal segment.

97. (E) The graph of f "(x) jumps at each corner of the graph of f (x), namely, 
at x equal to –3, –1, 1, 2, and 5.

98. (D) On the interval (–6,–3), f(x) = (x + 5).
3
2

x

f ′(x)

10 2 3 4 5 6 7–1–2–3– 4–5– 6

1
3

f f( ) ( )3 0
3

1
3

− = −

f h x f h x h x g h x h x g x x( ( )) ( ( )) ( ) ( ( )) ( ) (sin ) cos .• • •= ′ ′ = ′ =d
dx

–h h

f

• •
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99. (B) Verify that all choices but (B) are true. The graph of f "(x) has five (not
four) jump discontinuities.

100. (C) The best approximation to f "(0.10) is .

101. (D)

The average rate of change is represented by the slope of secant segment .
There appear to be 3 points at which the tangent lines are parallel to .AB

AB

x

y

a

A

b

f

B

•

•

f f( . ) ( . )
. .

0 20 0 10
0 20 0 10

−
−
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159

A. SLOPE; CRITICAL POINTS
If the derivative of y = f(x) exists at P(x1, y1), then the slope of the curve at P (which is
defined to be the slope of the tangent to the curve at P) is f !(x1), the derivative of f(x) at 
x = x1.

Any c in the domain of f such that either f !(c) = 0 or f !(c) is undefined is called a
critical point or critical value of f. If f has a derivative everywhere, we find the critical
points by solving the equation f !(x) = 0.

EXAMPLE 1
If f(x) = 4x3 – 6x2 – 8, then

f !(x) = 12x2 – 12x = 12x(x – 1),

which equals zero if x is 0 or 1. Thus, 0 and 1 are critical points.

EXAMPLE 2
If f(x) = 3x3 + 2x, then

f !(x) = 9x2 + 2.

Since f !(x) never equals zero (indeed, it is always positive), f has no critical values.

Applications of 
Differential Calculus

CHAPTER4

Concepts and Skills
In this chapter, we review how to use derivatives to

• find slopes of curves and equations of tangent lines;
• find a function’s maxima, minima, and points of inflections;
• describe where the graph of a function is increasing, decreasing, concave upward,

and concave downward;
• analyze motion along a line;
• create linear approximations;
• and work with related rates.

For BC Calculus students, we also review how to 

• find the slope of parametric and polar curves
• and use vectors to analyze motion along parametrically defined curves.

Slope of a
curve

Critical
point
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EXAMPLE 3
If f(x) = (x – 1)1/3, then

f !(x) = .

Although f ! is never zero, x = 1 is a critical value of f because f ! does not exist at
x = 1.

AVERAGE AND INSTANTANEOUS RATES OF CHANGE.

Both average and instantaneous rates of change were defined in Chapter 3. If as x varies
from a to a + h, the function f varies from f(a) to f(a + h), then we know that the difference
quotient

is the average rate of change of f over the interval from a to a + h.
Thus, the average velocity of a moving object over some time interval is the change in

distance divided by the change in time, the average rate of growth of a colony of fruit flies
over some interval of time is the change in size of the colony divided by the time elapsed,
the average rate of change in the profit of a company on some gadget with respect to produc-
tion is the change in profit divided by the change in the number of gadgets produced.

The (instantaneous) rate of change of f at a, or the derivative of f at a, is the limit of
the average rate of change as h Æ 0:

.

On the graph of y = f(x), the rate at which the y-coordinate changes with respect 
to the x-coordinate is f !(x), the slope of the curve. The rate at which s(t), the distance
traveled by a particle in t seconds, changes with respect to time is s!(t), the velocity 
of the particle; the rate at which a manufacturer’s profit P(x) changes relative to the pro-
duction level x is P!(x).

EXAMPLE 4
Let G = 400(15 – t)2 be the number of gallons of water in a cistern t minutes after an
outlet pipe is opened. Find the average rate of drainage during the first 5 minutes
and the rate at which the water is running out at the end of 5 minutes.

The average rate of change during the first 5min equals

The average rate of drainage during the first 5min is 10,000 gal/min.
The instantaneous rate of change at t = 5 is G!(5). Since

G!(t) = –800(15 – t),

G!(5) = –800(10) = –8000 gal/min. Thus the rate of drainage at the end of 5 min
is 8000 gal/min.

G G( ) ( ) ,5 0
5

400 100 400 225
5

10 000− = − = −⋅ ⋅ gal/min..

′ = + −
→

f a
f a h f a

hh
( ) lim

( ) ( )
0

f a h f a
h

( ) ( )+ −

1
3 1 2 3( )x −
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B. TANGENTS AND NORMALS
The equation of the tangent to the curve y = f (x) at point P(x1, y1) is

y – y1 = f !(x1)(x – x1).

The line through P that is perpendicular to the tangent, called the normal to the curve 

at P, has slope . Its equation is

.

If the tangent to a curve is horizontal at a point, then the derivative at the point is 0.
If the tangent is vertical at a point, then the derivative does not exist at the point.

TANGENTS TO PARAMETRICALLY DEFINED CURVES.

If the curve is defined parametrically, say in terms of t (as in Chapter 3, page 77), then
we obtain the slope at any point from the parametric equations. We then evaluate the
slope and the x- and y-coordinates by replacing t by the value specified in the question
(see Example 9, page 162).

EXAMPLE 5
Find the equations of the tangent and normal to the curve of f(x) = x3 – 3x2 at the
point (1, –2).

Since f !(x) = 3x2 – 6x and f !(1) = –3, the equation of the tangent is

y + 2 = –3(x – 1) or y + 3x = 1,

and the equation of the normal is

y + 2 = (x – 1) or 3y – x = –7.

EXAMPLE 6
Find the equation of the tangent to the curve of x 2y – x = y 3 – 8 at the point where
x = 0.

Here we differentiate implicitly to get . Since y = 2 when x = 0

and the slope at this point is , the equation of the tangent is

y – 2 = or 12y + x = 24.

EXAMPLE 7
Find the coordinates of any point on the curve of y 2 – 4xy = x2 + 5 for which the
tangent is horizontal.

Since and the tangent is horizontal when = 0, then x = –2y. If

we substitute this in the equation of the curve, we get

y2 – 4y(–2y) = 4y 2 + 5

5y2 = 5.

Thus y = ±1 and x = ±2. The points, then, are (2, –1) and (–2, 1).

dy
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−
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EXAMPLE 8
Find the x-coordinate of any point on the curve of y = sin2(x + 1) for which the
tangent is parallel to the line 3x – 3y – 5 = 0.

Since = 2sin(x + 1)cos(x + 1) = sin2(x + 1) and since the given line has

slope 1, we seek x such that sin 2(x + 1) = 1. Then

2(x + 1) = + 2nU (n an integer)

or

x + 1 = + nU and x = + nU – 1.

EXAMPLE 9
Find the equation of the tangent to F(t)(cos t, 2 sin2 t) at the point where 

t = .

Since = –sin t and = 4sin t cos t, we see that

.

At t = , x = , y = 2 , and = –2. The equation of the tangent is

or 4x + 2y = 5.

C. INCREASING AND DECREASING FUNCTIONS

CASE I. FUNCTIONS WITH CONTINUOUS DERIVATIVES.

A function y = f(x) is said to be on an interval if for all a and b in the interval

such that a < b, . To find intervals over which f(x) , that is, over 

which the curve , analyze the signs of the derivative to determine where .

EXAMPLE 10
If f(x) = x4 – 4x3, then

f !(x) = 4x3 – 12x2 = 4x2(x – 3).
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With critical values at x = 0 and x = 3, we analyze the signs of f ! in three
intervals:

The derivative changes sign only at x = 3. Thus,
if x < 3 f !(x) ≤ 0  and f is decreasing;
if x > 3 f !(x) > 0  and f is increasing.

Note that f is decreasing at x = 0 even though f !(0) = 0. (See Figure N4–5
on page 168.)

CASE II. FUNCTIONS WHOSE DERIVATIVES HAVE DISCONTINUITIES.

Here we proceed as in Case I, but also consider intervals bounded by any points of dis-
continuity of f or f !.

EXAMPLE 11

If f(x) = , then

.

We note that neither f nor f ! is defined at x = –1; furthermore, f !(x) never
equals zero. We need therefore examine only the signs of f !(x) when x < –1 and
when x > –1.

When x < –1, f !(x) < 0; when x > –1, f !(x) < 0. Therefore, f decreases on
both intervals. The curve is a hyperbola whose center is at the point (–1, 0).

D. MAXIMUM, MINIMUM, AND INFLECTION 
POINTS: DEFINITIONS

The curve of y = f (x) has a local (or relative) at a point where x = c if 

for all x in the immediate neighborhood of c. If a curve has a local 

at x = c, then the curve changes from to as x increases through c. If a

function is differentiable on the closed interval [a, b] and has a local maximum or mini-
mum at x = c (a < c < b), then f !(c) = 0. The converse of this statement is not true.

If f (c) is either a local maximum or a local minimum, then f (c) is called a local
extreme value or local extremum. (The plural of extremum is extrema.)

The global or absolute of a function on [a, b] occurs at x = c if 

for all x on [a, b].

A curve is said to be concave at a point P(x1, y1) if the curve lies 

its tangent. If at P, the curve is concave . In Figure N4–1, the curves

sketched in (a) and (b) are concave downward at P while in (c) and (d ) they are concave
upward at P.
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FIGURE N4–1

A point of inflection is a point where the curve changes its concavity from upward
to downward or from downward to upward. See §I, page 176, for a table relating a func-
tion and its derivatives. It tells how to graph the derivatives of f , given the graph of f. On
pages 178 and 262 we graph f, given the graph of f !.

E. MAXIMUM, MINIMUM, AND INFLECTION 
POINTS: CURVE SKETCHING

CASE I. FUNCTIONS THAT ARE EVERYWHERE DIFFERENTIABLE.

The following procedure is suggested to determine any maximum, minimum, or
inflection point of a curve and to sketch the curve.

(1) Find y! and y".
(2) Find all critical points of y, that is, all x for which y! = 0. At each of these x’s

the tangent to the curve is horizontal.
(3) Let c be a number for which y! is 0; investigate the sign of y " at c. If y "(c)

> 0, the curve is concave up and c yields a local minimum; if y "(c) < 0, the
curve is concave down and c yields a local maximum. This procedure is
known as the Second Derivative Test (for extrema). See Figure N4–2. If
y "(c) = 0, the Second Derivative Test fails and we must use the test in step
(4) below.

x

y

0
(a)  y′′ < 0; concave down

P(x1,y1)

x

y

0
(b)  y′′ < 0; concave down

P(x1,y1)

x

y

0
(c)  y′′ > 0; concave up

P(x1,y1)

x

y

0
(d)  y′′ > 0; concave up

P(x1,y1)

Point of
inflection

Second
Derivative
Test
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FIGURE N4–2

(4) If y!(c) = 0 and y $(c) = 0, investigate the signs of y! as x increases through c.
If y!(x) > 0 for x’s ( just) less than c but y!(x) < 0 for x’s ( just) greater than c,
then the situation is that indicated in Figure N4–3a, where the tangent lines
have been sketched as x increases through c; here c yields a local maximum. If
the situation is reversed and the sign of y! changes from – to + as x increases
through c, then c yields a local minimum. Figure N4–3b shows this case. The
schematic sign pattern of y!, + 0 – or – 0 +, describes each situation completely.
If y ! does not change sign as x increases through c, then c yields neither a
local maximum nor a local minimum. Two examples of this appear in Figures
N4–3c and N4–3d.

x

y

0

x

y

0

(a)  y′(c) = 0; y′′(c) > 0;
c yields a local minimum.

c

c

(a)  y′(c) = 0; y′′(c) < 0;
c yields a local maximum.
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FIGURE N4–3

(5) Find all x’s for which y $ = 0; these are abscissas of possible points of inflec-
tion. If c is such an x and the sign of y $ changes (from + to – or from – to +)
as x increases through c, then c is the x-coordinate of a point of inflection. If
the signs do not change, then c does not yield a point of inflection.

The crucial points found as indicated in (1) through (5) above should be plotted along
with the intercepts. Care should be exercised to ensure that the tangent to the curve is hori-

zontal whenever = 0 and that the curve has the proper concavity.

EXAMPLE 12
Find any maximum, minimum, or inflection points on the graph of f(x) = x3 – 5x2

+ 3x + 6, and sketch the curve.
Steps:
(1) Here f !(x) = 3x2 – 10x + 3 and f $(x) = 6x – 10.

(2) f !(x) = (3x – 1)(x – 3), which is zero when x = or 3.

(3) Since f $ < 0, we know that the point is a local maximum; 

since f $(3) > 0, the point (3, f(3)) is a local minimum. Thus, is a 

local maximum and (3, –3) a local minimum.

(4) is unnecessary for this problem.
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c yields a maximum.
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sign of y′ is +, then 0, then +; 
no maximum or minimum.

x
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0
y′ changes from – to 0 to +;
c yields a minimum.
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0
sign of y′ is –, then 0, then – ; 
no maximum or minimum.
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(5) f $(x) = 0 when x = , and f $ changes sign as x increases through ,

so the graph of f has an inflection point. See Figure N4–4.

FIGURE N4–4

Verify the graph and information obtained above on your graphing calculator.

EXAMPLE 13
If we apply the procedure to f(x) = x4 – 4x3, we see that

(1) f !(x) = 4x3 – 12x2 and f $(x) = 12x2 – 24x.

(2) f !(x) = 4x 2(x – 3), which is zero when x = 0 or x = 3.

(3) Since f $(x) = 12x(x – 2) and f $(3) > 0, the point (3, –27) is a relative
minimum. Since f $(0) = 0, the second-derivative test fails to tell us whether
0 yields a maximum or a minimum.

(4) Since f !(x) does not change sign as x increases through 0, the point 
(0, 0) yields neither a maximum nor a minimum.

(5) f $(x) = 0 when x is 0 or 2; f $ changes signs as x increases through 
0 (+ 0 –), and also as x increases through 2 (– 0 +). Thus both (0, 0) and 
(2, –16) are inflection points of the curve.

The curve is sketched in Figure N4–5 on page 168.

x

y

0

1,175
3  27(        )

5,47
3 27(       )

(3,–3)

y = x3 – 5x2 + 3x + 6

5
3

5
3
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FIGURE N4–5

Verify the preceding on your calculator.

CASE II. FUNCTIONS WHOSE DERIVATIVES MAY NOT EXIST
EVERYWHERE.

If there are values of x for which a first or second derivative does not exist, we con-
sider those values separately, recalling that a local maximum or minimum point is one of
transition between intervals of rise and fall and that an inflection point is one of transi-
tion between intervals of upward and downward concavity.

EXAMPLE 14
If y = x2/3, then

.

Neither derivative is zero anywhere; both derivatives fail to exist when x = 0. As x

increases through 0, changes from – to +; (0, 0) is therefore a minimum. Note 

that the tangent is vertical at the origin, and that since is negative everywhere

except at 0, the curve is everywhere concave down. See Figure N4–6.

FIGURE N4–6

x

y

0

d y
dx

2

2

dy
dx

dy
dx x

d y
dx x

= = −2
3

2
91 3

2

2 4 3      and      

y

x
0

(2,–16)

(3,–27)

4

y = x4 – 4x3
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EXAMPLE 15
If y = x1/3, then

.

As in Example 14, neither derivative ever equals zero and both fail to exist 

when x = 0. Here, however, as x increases through 0, does not change sign. 

Since is positive for all x except 0, the curve rises for all x and can have 

neither maximum nor minimum points. The tangent is again vertical at the 

origin. Note here that does change sign (from + to –) as x increases through

0, so that (0, 0) is a point of inflection of the curve. See Figure N4–7.

FIGURE N4–7
Verify the graph on your calculator.

F. GLOBAL MAXIMUM OR MINIMUM

CASE I. DIFFERENTIABLE FUNCTIONS.

If a function f is differentiable on a closed interval a " x " b, then f is also continuous
on the closed interval [a,b] and we know from the Extreme Value Theorem (page 34) that
f attains both a (global) maximum and a (global) minimum on [a,b]. To find these, we
solve the equation f !(x) = 0 for critical points on the interval [a,b], then evaluate f at each
of those and also at x = a and x = b. The largest value of f obtained is the global max, and
the smallest the global min.

y

x

y = x 1/3

0

d y
dx

2

2

dy
dx

dy
dx

dy
dx x

d y
dx x

= = −1
3

2
92 3

2

2 5 3      and     
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EXAMPLE 16
Find the global max and global min of f on (a) –2 " x " 3, and (b) 0 " x " 3, if
f(x) = 2x3 – 3x2 – 12x.

(a) f !(x) = 6x2 – 6x – 12 = 6(x + 1)(x – 2), which equals zero if x = –1 or 2.
Since f(–2) = –4, f(–1) = 7, f(2) = –20, and f(3) = –9, the global max of f occurs
at x = –1 and equals 7, and the global min of f occurs at x = 2 and equals –20.
(b) Only the critical value 2 lies in [0,3]. We now evaluate f at 0, 2, and 3.
Since f(0) = 0, f(2) = –20, and f(3) = –9, the global max of f equals 0 and
the global min equals –20.

CASE II. FUNCTIONS THAT ARE NOT EVERYWHERE
DIFFERENTIABLE.

We proceed as for Case I but now evaluate f also at each point in a given interval for
which f is defined but for which f! does not exist.

EXAMPLE 17
The absolute-value function f(x) = !x! is defined for all real x, but f !(x) does not
exist at x = 0. Since f !(x) = –1 if x < 0, but f !(x) = 1 if x > 0, we see that f has a
global min at x = 0.

EXAMPLE 18
The function f (x) = has neither a global max nor a global min  on any

interval that contains zero (see Figure N2–4, page 90). However, it does attain
both a global max and a global min on every closed interval that does not 

contain zero. For instance, on [2,5] the global max of f is , the global min .

G. FURTHER AIDS IN SKETCHING
It is often very helpful to investigate one or more of the following before sketching

the graph of a function or of an equation:

(1) Intercepts. Set x = 0 and y = 0 to find any y- and x-intercepts respectively.
(2) Symmetry. Let the point (x, y) satisfy an equation. Then its graph is symmetric about

the x-axis if (x, –y) also satisfies the equation;
the y-axis if (–x, y) also satisfies the equation;
the origin if (–x, –y) also satisfies the equation.

(3) Asymptotes. The line y = b is a horizontal asymptote of the graph of a function

f if either f(x) = b or f(x) = b. If f(x) = , inspect the degrees of P(x) 

and Q(x), then use the Rational Function Theorem, page 96. The line x = c is a
vertical asymptote of the rational function if Q(c) = 0 but P(c) | 0.

(4) Points of discontinuity. Identify points not in the domain of a function, particu-
larly where the denominator equals zero.

P x
Q x

( )
( )

P x
Q x

( )
( )

lim
x→−∞

lim
x→∞

1
5

1
2

1
x
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EXAMPLE 19

To sketch the graph of y = , we note that, if x = 0, then y = –1, and that y = 0

when the numerator equals zero, which is when x = . A check shows that the

graph does not possess any of the symmetries described above. Since y Æ 2 as x Æ
±h, y = 2 is a horizontal asymptote; also, x = 1 is a vertical asymptote. We see
immediately that the function is defined for all reals except x = 1; the latter is the
only point of discontinuity.

If we rewrite the function as follows:

,

it is easy to find derivatives:

.

From y! we see that the function decreases everywhere (except at x = 1), and from
y $ that the curve is concave down if x < 1, up if x > 1. See Figure N4–8.

FIGURE N4–8

Verify the preceding on your calculator, using [-4,4] ¥ [–4,8].

EXAMPLE 20
Describe any symmetries of the graphs of (a) 3y2 + x = 2; 

(b) y = x + ; (c) x2 – 3y2 = 27.

(a) Suppose point (x, y) is on this graph. Then so is point (x, –y), since
3(–y)2 + x = 2 is equivalent to 3y2 + x = 2. Then (a) is symmetric about the x-axis.

(b) Note that point (–x, –y) satisfies the equation if point (x, y) does: 

.( ) ( )
( )

− = − +
−

↔ = +y x
x

y x
x

1 1

1
x

x

y

0

1

2
(1,2)

–1

–1

′ = −
−

′′ =
−

y
x

y
x

3
1

6
12 3( ) ( )

      and      

y
x

x
x

x
x
x x

= +
−

= − +
−

= − +
−

= +
−

2 1
1

2 2 3
1

2 1 3
1

2
3

1
( )

− 1
2

2 1
1

x
x

+
−
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Therefore the graph of this function is symmetric about the origin.
(c) This graph is symmetric about the x-axis, the y-axis, and the origin. It is

easy to see that, if point (x, y) satisfies the equation, so do points (x, –y), (–x, y), and
(–x, –y).

H. OPTIMIZATION: PROBLEMS INVOLVING 
MAXIMA AND MINIMA
The techniques described above can be applied to problems in which a function is to be
maximized (or minimized). Often it helps to draw a figure. If y, the quantity to be maxi-
mized (or minimized), can be expressed explicitly in terms of x, then the procedure out-
lined above can be used. If the domain of y is restricted to some closed interval, one
should always check the endpoints of this interval so as not to overlook possible extrema.
Often, implicit differentiation, sometimes of two or more equations, is indicated.

EXAMPLE 21
The region in the first quadrant bounded by the curves of y2 = x and y = x is
rotated about the y-axis to form a solid. Find the area of the largest cross section
of this solid that is perpendicular to the y-axis.

FIGURE N4–9

See Figure N4–9. The curves intersect at the origin and at (1,1), so 0 < y < 1.
A cross section of the solid is a ring whose area A is the difference between the
areas of two circles, one with radius x2, the other with radius x1. Thus

The only relevant zero of the first derivative is y = . Thus for the maximum

area A we have

Note that = U(2 – 12y2) and that this is negative when y = , assuring

a maximum there. Note further that A equals zero at each endpoint of the interval 

[0,1] so that is the global maximum area.
π
4

1
2

d A
dy

2

2

A = π −



 = π1

2
1
4 4

.

1
2

A x x y y
dA
dy

y y y y= π − π = π − = π − = π −2
2

1
2 2 4 3 22 4 2 1 2( ); ( ) ( ).

x

y

0

(x1,y)

(x2,y)

(1,1)
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EXAMPLE 22
The volume of a cylinder equals V cubic inches, where V is a constant. Find the
proportions of the cylinder that minimize the total surface area.

FIGURE N4–10

See Figure N4–10. We know that the volume is

V = Ur2h (1)

where r is the radius and h the height. We seek to minimize S, the total surface area,
where

S = 2Ur2 + 2Urh (2)

Solving (1) for h, we have h = , which we substitute in (2):

. (3)

Differentiating (3) with respect to r yields

.

Now we set equal to zero to determine the conditions that make S a 

minimum:

The total surface area of a cylinder of fixed volume is thus a minimum when its
height equals its diameter.

4 2 0

4 2

4
2

2

2

2

2

2

π

π

π
π

r V
r

r V
r

r
r h

r
r h

− =

=

=
( )

= .

dS
dr

dS
dr

r V
r

= −4 2
2π

S r r V
r

r V
r

= + = +2 2 2 22
2

2π π
π

π

V
rπ 2

r

h
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(Note that we need not concern ourselves with the possibility that the value 

of r that renders equal to zero will produce a maximum surface area rather than

a minimum one. With V fixed, we can choose r and h so as to make S as large as we
like.)

EXAMPLE 23
A charter bus company advertises a trip for a group as follows: At least 20 
people must sign up. The cost when 20 participate is $80 per person. The price
will drop by $2 per ticket for each member of the traveling group in excess of
20. If the bus can accommodate 28 people, how many participants will maximize
the company’s revenue?

Let x denote the number who sign up in excess of 20. Then 0 ! x ! 8. The
total number who agree to participate is (20 + x), and the price per ticket is 
(80 – 2x) dollars. Then the revenue R, in dollars, is

R = (20 + x)(80 – 2x),

R "(x) = (20 + x)(–2) + (80 – 2x) • 1

= 40 – 4x.

This is zero if x = 10. Although x = 10 yields maximum R—note that R#(x) = –4 and
is always negative—this value of x is not within the restricted interval. We therefore
evaluate R at the endpoints 0 and 8: R(0) = 1600 and R(8) = 28 • 64 = 1792, 
28 participants will maximize revenue.

EXAMPLE 24
A utilities company wants to deliver gas from a source S to a plant P located
across a straight river 3 miles wide, then downstream 5 miles, as shown in Figure
N4–11. It costs $4 per foot to lay the pipe in the river but only $2 per foot to lay
it on land.

(a) Express the cost of laying the pipe in terms of u.
(b) How can the pipe be laid most economically?

FIGURE N4–11

(a) Note that the problem “allows” us to (1) lay all of the pipe in the river, along
a line from S to P; (2) lay pipe along SR, in the river, then along RP on land; or
(3) lay some pipe in the river, say, along ST, and lay the rest on land along TP.
When T coincides with P, we have case (1), with v = 0; when T coincides with R,
we have case (2), with u = 0. Case (3) includes both (1) and (2).

3 miles

5 miles

vu

R

S

T P

dS
dr
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In any event, we need to find the lengths of pipe needed (that is, the dis-
tances involved); then we must figure out the cost.

In terms of u:
In the River On Land

Distances:
miles TP = v = 5 – u

feet TP = 5280(5 – u)

Costs (dollars): 2[5280(5 – u)]

If C(u) is the total cost,

(b) We now minimize C(u):

.

We now set C "(u) equal to zero and solve for u:

,

where, in the last step, we squared both sides; then

4u2 = 9 + u2, 3u2 = 9, u2 = 3, u = ,

where we discard u = as meaningless for this problem.
The domain of C(u) is [0,5] and C is continuous on [0,5]. Since

we see that u = yields minimum cost. Thus, the pipe can be laid most eco-

nomically if some of it is laid in the river from the source S to a point T that is

miles toward the plant P from R, and the rest is laid along the road from T to P.

3

3

 

C

C

C

( ) , $ , ,

( ) , $ , ,

, $ , ,

0 10 560 2 9 5 116 160

5 10 560 2 34 123 150

3 10 560 2 12 5 3 107 671

= +( ) =

= ( ) ª

( ) = + -( ) =

− 3

3

2

9
1 0

2

9
1

4
9

1
2 2

2

2

u

u

u

u

u
u+

− = →
+

= →
+

=

′ =
+

−






=
+

−






C u
u

u

u

u
( ) , ,•10 560 2

1
2

2

9
1 10 560

2

9
1

2 2

 

C u u u

u u

( ) , , ( )

, ( ).

= + + -

= + + -

21 120 9 10 560 5

10 560 2 9 5

2

2

4 5280 9 2( ) + u

ST u= +5280 9 2

ST u= +9 2
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I. RELATING A FUNCTION AND ITS 
DERIVATIVES GRAPHICALLY

The following table shows the characteristics of a function f and their implications for f ’s
derivatives. These are crucial in obtaining one graph from another. The table can be used
reading from left to right or from right to left.

Note that the slope at x = c of any graph of a function is equal to the ordinate at c of
the derivative of the function.

f f ! f "

ON AN INTERVAL increasing ≥ 0
decreasing ≤ 0

x < c x = c x > c
AT c local maximum +          0             – f "(c) < 0

( f ! is decreasing)

local minimum –           0            + f "(c) > 0
( f ! is increasing)

neither local +            0             +
maximum nor –     0             –
local minimum ( f ! does not change sign)

x < c x = c x > c
AT c point of f !(c) is a minimum; –          0        +

inflection changes from decreasing
to increasing

f !(c) is a maximum; +          0          –
changes from increasing
to decreasing

ON AN INTERVAL concave up f ! is increasing f " ≥ 0

concave down f ! is decreasing f " ≤ 0

If f !(c) does not exist, check the signs of f ! as x increases through c: plus-to-minus
yields a local maximum; minus-to-plus yields a local minimum; no sign change means
no maximum or minimum, but check the possibility of a point of inflection.

Tables and number lines showing sign changes of the function and its derivatives
can be very helpful in organizing all of this information. Note, however, that the AP
Exam requires that students write sentences that describe the behavior of the function
based on the sign of its derivative. 
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EXAMPLE 25A
Given the graph of f(x) shown in Figure N4–12, sketch f !(x).

Point x = Behavior of f Behavior of f !

c1 f(c1) is a local max f !(c1) = 0; f ! changes
sign from + to –

c2 c2 is an inflection f ! changes from decreasing
point of f ; the graph of to increasing; f !(c2) is a
f changes concavity from local minimum
down to up

c3 f(c3) is a local minimum f !(c3) = 0; f ! changes sign
from – to +

c4 c4 is an inflection f ! changes from increasing
point of f ; the graph of to decreasing; f !(c4) is a
f changes concavity from local maximum
up to down

c5 f(c5) is a local maximum f !(c5) = 0; f ! changes sign
from + to –

x

f (x)

c1 c2 c4 c5

c3

x

f ′(x)

c1 c2 c4 c5c3

FIGURE N4–12
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EXAMPLE 25B

Given the graph of f !(x) shown in Figure N4–13, sketch a possible graph of f.

First, we note that f !(–3) and f !(2) are both 0. Thus the graph of f must have
horizontal tangents at x = –3 and x = 2. Since f !(x) < 0 for x –3, we see that f must
be decreasing there. Below is a complete signs analysis of f !, showing what it
implies for the behavior of f.

f dec –3 inc 2 inc

f ! – + +

Because f ! changes from negative to positive at x = –3, f must have a minimum
there, but f has neither a minimum nor a maximum at x = 2.

We note next that f ! is increasing for x < –1. This means that the derivative
of f !, f ", must be positive for x < –1 and that f is concave upward. Analyzing the
signs of f " yields the following:

f conc. upward conc. down conc. upward

f ! inc dec inc
f " + – +

We conclude that the graph of f has two points of inflection, changing concav-
ity from upward to downward at x = –1 and back to upward at x = 2. We use the
information obtained to sketch a possible graph of f, shown in Figure N4–14. Note
that other graphs are possible; in fact, any vertical translation of this f will do!

x

f

–1–2–3–4 1 2 3 4

x
0

f '

–1–2–3–4 1 2 3 4

FIGURE N4–13

–1 2

FIGURE N4–14
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J. MOTION ALONG A LINE
If a particle moves along a line according to the law s = f(t), where s represents the posi-
tion of the particle P on the line at time t, then the velocity v of P at time t is given by 

and its acceleration a by or by . The speed of the particle is !v!, the magnitude

of v. If the line of motion is directed positively to the right, then the motion of the parti-
cle P is subject to the following: At any instant,

(1) if v > 0, then P is moving to the right and  its distance s is increasing; if v < 0,
then P is moving to the left and its distance s is decreasing;
(2) if a > 0, then v is increasing; if a < 0, then v is decreasing;
(3) if a and v are both positive or both negative, then (1) and (2) imply that the
speed of P is increasing or that P is accelerating; if a and v have opposite signs,
then the speed of P is decreasing or P is decelerating;
(4) if s is a continuous function of t, then P reverses direction whenever v is zero and
a is different from zero; note that zero velocity does not necessarily imply a reversal in
direction.

EXAMPLE 26
A particle moves along a line according to the law s = 2t3 – 9t2 + 12t – 4, where t
% 0. (a) Find all t for which the distance s is increasing. (b) Find all t for which
the velocity is increasing. (c) Find all t for which the speed of the particle is

increasing. (d) Find the speed when t = . (e) Find the total distance traveled
between t = 0 and t = 4.

and

.

The sign of v behaves as follows:

if t < 1, then v > 0,
1 < t < 2, v < 0,

t > 2, v > 0.

For a, 

if t < , then a < 0,

t > , a > 0.
3
2

3
2

a
dv
dt

d s
dt

t t= = = − = −





2

2 12 18 12
3
2

v
ds
dt

t t t t t t= = − + = − + = −6 18 12 6 3 2 6 2 12 2( ) ( – )( )

3
2

d s
dt

2

2

dv
dt

ds
dt

Velocity

Acceleration

Speed
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180 AP Calculus

These signs of v and a immediately yield the answers, as follows:
(a) s increases when t < 1 or t > 2.

(b) v increases when t > .

(c) The speed !v! is increasing when v and a are both positive, that is, for t > 2, and

when v and a are both negative, that is, for 1 < t < .

(d) The speed when t = equals !v! = = .

FIGURE N4–15

(e) P’s motion can be indicated as shown in Figure N4–15. P moves to the right
if t < 1, reverses its direction at t = 1, moves to the left when 1 < t < 2, reverses
again at t = 2, and continues to the right for all t > 2. The position of P at certain
times t are shown in the following table:

t: 0 1 2 4

s: –4 1 0 28

Thus P travels a total of 34 units between times t = 0 and t = 4.

EXAMPLE 27
Answer the questions of Example 26 if the law of motion is 

s = t4 – 4t3.

Since v = 4t3 – 12t2 = 4t2(t – 3) and a = 12t2 – 24t = 12t(t – 2), the signs of v
and a are as follows:

if t < 3, then v < 0

3 < t, v > 0;

if t < 0, then a > 0

0 < t < 2, a < 0

2 < t, a > 0.

Thus
(a) s increases if t > 3.
(b) v increases if t < 0 or t > 2.
(c) Since v and a have the same sign if 0 < t < 2 or if t > 3, the speed increases
on these intervals.

(d) The speed when t = equals !v! = = .
27
2

− 27
2

3
2

t = 2

t = 1

t = 3

t = 0

510– 4
s

3
2

− 3
2

3
2

3
2

3
2
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FIGURE N4–16

(e) The motion is shown in Figure N4–16. The particle moves to the left if t < 3
and to the right if t > 3, stopping instantaneously when t = 0 and t = 3, but revers-
ing direction only when t = 3. Thus:

t: 0 3 4
s: 0 –27 0

The particle travels a total of 54 units between t = 0 and t = 4.
(Compare with Example 13, page 100, where the function f(x) = x4 – 4x3 is

investigated for maximum and minimum values; also see the accompanying
Figure N4–5 on page 168.)

K. MOTION ALONG A CURVE: VELOCITY AND
ACCELERATION VECTORS
If a point P moves along a curve defined parametrically by P(t) = (x(t), y(t)), where t rep-
resents time, then the vector from the origin to P is called the position vector, with x as
its horizontal component and y as its vertical component. The set of position vectors for
all values of t in the domain common to x(t) and y(t) is called vector function. 

A vector may be symbolized either by a boldface letter (R) or an italic letter with an 
arrow written over it ( ). The position vector, then, may be written as (t) = (x,y) or as 
R = xi + yj, where i is the horizontal unit vector from (0,0) to (1,0) and j is the vertical
unit vector from (0,0) to (0,1). In print the boldface notation is clearer, and will be used
in this book; when writing by hand, the arrow notation is simpler.

The velocity vector is the derivative of the vector function (the position vector):

or (t) = .

Alternative notations for and are vx and vy, respectively; these are the 

components of v in the horizontal and vertical directions, respectively. The slope of v is

,

which is the slope of the curve; the magnitude of v is the vector’s length:

|v| = .
dx
dt

dy
dt

v vx y




 + 



 = +

2 2
2 2

dy
dt
dx
dt

dy
dx

=

dy
dt

dx
dt

dx
dt

dy
dt

,




v

→
v

R
i j= = +d

dt
dx
dt

dy
dt

R
→

R
→
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0
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Thus, if the vector v is drawn initiating at P, it will be tangent to the curve at P and its mag-
nitude will be the speed of the particle at P.

The acceleration vector a is or , and can be obtained by a second differen-

tiation of the components of R. Thus

, or ,

and its magnitude is the vector’s length:

where we have used ax and ay for and , respectively.

EXAMPLE 28
A particle moves according to the equations x = 3cos t, y = 2sin t. (a) Find a single
equation in x and y for the path of the particle and sketch the curve. (b) Find the
velocity and acceleration vectors at any time t, and show that

a = –R at all times. (c) Find R, v, and a when (1) t1 = , (2) t2 = U, and draw them 

on the sketch. (d) Find the speed of the particle and the magnitude of its accelera-
tion at each instant in (c). (e) When is the speed a maximum? A minimum?

(a) Since = cos2 t and = sin2 t, therefore

and the particle moves in a counterclockwise direction along an ellipse, starting,
when t = 0, at (3, 0) and returning to this point when t = 2U.
(b) We have

R = 3cos ti + 2sin tj,

v = –3sin ti + 2cos tj,

a = –3cos ti – 2sin tj = –R.

The acceleration, then, is always directed toward the center of the ellipse.

(c) At t1 = ,

R i j

v i j

a i j

1

1

1

3 3
2
3
2

3

3 3
2

= +

= +

= − −
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6
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Applications of Differential Calculus 183

At t2 = U,

R2 = –3i,

v2 = –2j,

a2 = 3i.

The curve, and v and a at t1 and t2, are sketched in Figure N4–18, below.

(d) At t1 = , At t2 = U,

FIGURE N4–18

(e) For the speed !v! at any time t

We see immediately that the speed is a maximum when t = or , and a mini-

mum when t = 0 or U. The particle goes fastest at the ends of the minor axis and 

most slowly at the ends of the major axis. Generally one can determine maximum 

or minimum speed by finding , setting it equal to zero, and applying the 

usual tests to sort out values of t that yield maximum or minimum speeds.
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EXAMPLE 29
A particle moves along the parabola y = x2 – x with constant speed Find v at
(2, 2).

Since

(1)

and

(2)

(3)

Relation (3) holds at all times; specifically, at (2, 2), vx
2 + 9vx

2 = 10 so that vx = ±1.
From (1), then, we see that vy = ±3. Therefore v at (2, 2) is either i + 3j or –i – 3j.
The former corresponds to counterclockwise motion along the parabola, as shown
in Figure N4–19a; the latter to clockwise motion, indicated in Figure N4–19b.

FIGURE N4–19a

FIGURE N4–19b

x

y

0

(2,2)

v

x

y

0

(2,2)

v

v x vx x
2 2 22 1 10+ − =( ) .

v vx y
2 2 10+ = ,

v
dy
dt

x
dx
dt

x vy x= = − = −( ) ( )2 1 2 1

10.
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Applications of Differential Calculus 185

L. TANGENT-LINE APPROXIMATIONS
If f !(a) exists, then the local linearization of f (x) at a is

.

Since the equation of the tangent line to y = f (x) at x = a is

,

we see that the y value on the tangent line is an approximation for the actual or true value
of f. Local linearization is therefore also called tangent-line approximation.† For values
of x close to a, we have

, (1)

FIGURE N4–20

where f (a) + f !(a)(x – a) is the linear or tangent-line approximation for f (x), and 
f !(a)(x – a) is the approximate change in f as we move along the curve from a to x. See
Figure N4–20.

In general, the closer x is to a, the better the approximation is to f (x).

EXAMPLE 30
We now find tangent-line approximations for each of the following functions at the
values indicated:

(a) sin x at a = 0 (b) cos x at a = 

(c) 2x3 – 3x at a = 1 (d) at a = 8

(a) At a = 0, sin x ! sin (0) + cos (0)(x – 0) ! 0 + 1 • x ! x

(b) At a = , cos x ! cos – sin ( )(x – ) ! –x + 
π
2

π
2

π
2

π
2

π
2

1 + x

π
2

tan
gen

t lin
e

f (a)

f '(a) (x – a)

f (x)

f (a)

x – a

a x

linear approximation 
for f (x)

 f x f a f a x a( ) ( ) ( )( )! + ′ −

y f a f a x a− = ′ −( ) ( )( )

f a f a x a( ) ( )( )+ ′ −
Local
linearization

Tangent-line
approximation

†Local linearization is also referred to as “linear approximation” or even “best linear approximation” (the latter because it is
better than any other linear approximation).
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186 AP Calculus

(c) At a = 1, 2x3 – 3x ! –1 + 3(x – 1) ! 3x – 4

(d) At a = 8, (x – 8) = 3 + (x – 8)

EXAMPLE 31
Using the tangent lines obtained in Example 30 and a calculator, we evaluate each
function, then its linear approximation, at the indicated x-values:

Function (a) (b) (c) (d)

x-value –0.80 2.00 1.10 5.50

True value –0.72 –0.42 –0.64 2.55

Approximation –0.80 –0.43 –0.70 2.58

Example 31 shows how small the errors can be when tangent lines are used
for approximations and x is near a.

EXAMPLE 32
A very useful and important local linearization enables us to approximate (1 + x)k

by 1 + kx for k any real number and for x near 0. Equation (1) yields

! 1 + kx. (2)

Then, near 0, for example,

.

EXAMPLE 33

Estimate the value of at x = 0.05.

For our linearization, we’ll use the line tangent to f(x) = at x = 0; f(0) = 3.

f !(x) = , so f !(0) = 6 ; hence, the line is y = 6x + 3.

Our tangent-line approximation, then, is ≈ 6x + 3 .

At x = 0.05, we have f (0.05) ≈ 6(0.05) + 3 = 3.3.

The true value, to three decimal places, of when x = 0.05 is 3.324; the

tangent-line approximation yields 3.3. This tells us that the curve is concave up,
lying above the tangent line to the curve near x = 0. Graph the curve and the tan-
gent line on [–1, 1] ¥ [–1, 6] to verify these statements.

3
1 2( )− x

3
1

2−( )x

6
1

3−( )x

3
1

2−( )x

3
1

2−( )x

 
1 1

1
2

1 1 33+ + + +x x x x! !    and   ( )

 ( ) ( ) ( ) ( )•1 1 0 1 0+ + + + −x k x xk k k! at 0
–1

1
6

1
2 1 8+

1 1 8+ = + +x
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Applications of Differential Calculus 187

Approximating the Change in a Function.
Equation (1) above for a linear approximation also tells us by about how much f
changes when we move along the curve from a to x: it is the quantity f !(a)(x – a).
(See Figure N4–20 on page 185.)

EXAMPLE 34
To find by approximately how much the area of a circle changes when the radius
increases from 3 to 3.01 inches, we use the formula A = Ur2. Then Equation (1)
tells us that the linear approximation for A(r), when A is near 3, is

.

Here we want only the change in area; that is,

.

Since A!(r) = 2Ur, therefore A!(3) = 6U; also, (r – 3) = 0.01, so the approximate
change is (6U)(0.01) " 0.1885 in.2 The true increase in area, to four decimal
places, is 0.1888 in.2

EXAMPLE 35
Suppose the diameter of a cylinder is 8 centimeters. If its circumference is
increased by 2 centimeters, how much larger, approximately, are (a) the diame-
ter, and (b) the area of a cross section?

(a) Let D and C be respectively the diameter and circumference of the cylinder.
Here, D plays the role of f, and C that of x, in the linear approximation equation
(1) on page 185. The approximate increase in diameter, when C = 8U, is there-

fore equal to D!(C) times (the change in C). Since C = UD, D = and D!(C) = 

(which is constant for all C). The change in C is given as 2 cm; so the 

increase in diameter is equal approximately to • 2 " 0.6366 cm.

(b) The approximate increase in the area of a (circular) cross section is equal to

A!(C) • (change in C),

where the area A = Ur 2 = U . Therefore,

.

Since the change in C is 2 cm, the area of a cross section increases by approximately
4 • 2 = 8 cm2.

′ =
π

=
π

= π
π

=A C
C C

( )
2
4 2

8
2

4

C C
2 4

2 2

π




 π

=
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π

1
π

C
π

′ − =A r r( )( ) .3 3 3 01    when    

A A r( ) ( )( )3 3 3+ ′ −
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188 AP Calculus

M. RELATED RATES
If several variables that are functions of time t are related by an equation, we can obtain a
relation involving their (time) rates of change by differentiating with respect to t.

EXAMPLE 36
If one leg AB of a right triangle increases at the rate of 2 inches per second, while
the other leg AC decreases at 3 inches per second, find how fast the hypotenuse is
changing when AB = 6 feet and AC = 8 feet.

FIGURE N4–21

See Figure N4–21. Let u, v, and z denote the lengths respectively of AB, AC, and 

BC. We know that (ft/sec) and . Since (at any time) z2 = u2 + v2, then

.

At the instant in question, u = 6, v = 8, and z = 10, so

EXAMPLE 37
The diameter and height of a paper cup in the shape of a cone are both 4 inches,

and water is leaking out at the rate of cubic inch per second. Find the rate at

which the water level is dropping when the diameter of the surface is 2 inches.

See Figure N4–22. We know that and that h = 2r. 

Here, V = Ur2h = , so

When the diameter is 2 in., so is the height, and = . The water level is thus

dropping at the rate of in./sec.
1

2π
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π
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2
dh
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h dh
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dt h h

= π = −
π
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Applications of Differential Calculus 189

FIGURE N4–22

EXAMPLE 38
Suppose liquid is flowing into a vessel at a constant rate. The vessel has the
shape of a hemisphere capped by a cylinder, as shown in Figure N4–23. Graph 
y = h(t), the height (= depth) of the liquid at time t, labeling and explaining any
salient characteristics of the graph.

FIGURE N4–23

Liquid flowing in at a constant rate means the change in volume is constant
per unit of time. Obviously, the depth of the liquid increases as t does, so h!(t) is
positive throughout. To maintain the constant increase in volume per unit of
time, when the radius grows, h!(t) must decrease. Thus, the rate of increase of h
decreases as h increases from 0 to a (where the cross-sectional area of the vessel
is largest). Therefore, since h!(t) decreases, h $(t) < 0 from 0 to a and the curve is
concave down.

As h increases from a to b, the radius of the vessel (here cylindrical)
remains constant, as do the cross-sectional areas. Therefore h !(t) is also constant,
implying that h(t) is linear from a to b.

Note that the inflection point at depth a does not exist, since h $(t) < 0 for all
values less than a but is equal to 0 for all depths greater than or equal to a.

a

b

y = h(t)

2

4

r

h
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N. SLOPE OF A POLAR CURVE
We know that, if a smooth curve is given by the parametric equations

x = f(t)    and    y = g(t),

then
provided that f !(t) | 0.

To find the slope of a polar curve r = f(q), we must first express the curve in para-
metric form. Since

x = r cos q and    y = r sin q,
therefore,

x = f(q) cos q and y = f(q) sin q.

If f(q) is differentiable, so are x and y; then

Also, if | 0, then

.

In doing an exercise, it is often easier simply to express the polar equation para-
metrically, then find dy/dx, rather than to memorize the formula.

EXAMPLE 39

(a) Find the slope of the cardioid r = 2(1 + cos q) at U = . See Figure N4–24.

(b) Where is the tangent to the curve horizontal?

FIGURE N4–24
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Applications of Differential Calculus 191

(a) Use r = 2(1 + cos q), x = r cos q, y = r sin q, and r! = –2 sin q; then

.

At q = , = –1. 

(b) Since the cardioid is symmetric to q = 0 we need consider only the upper half

of the curve for part (b). The tangent is horizontal where = 0 (provided | 0).

Since factors into 2(2 cos q – 1)(cos q + 1), which equals 0 for cos q = or

–1, q = or U. From part (a), | 0 at , but does equal 0 at U. There-

fore, the  tangent is horizontal only at (and, by symmetry, at ).

It is obvious from Figure N4–24 that r!(q) does not give the slope of the

cardioid. As q varies from 0 to , the slope varies from –h to 0 to +h (with the

tangent rotating counterclockwise), taking on every real value. However, r !(q)
equals –2 sin q, which takes on values only between –2 and 2!

Chapter Summary
In this chapter we reviewed many applications of derivatives. We’ve seen how to find
slopes of curves and used that skill to write equations of lines tangent to a curve. Those
lines often provide very good approximations for values of functions. We have looked at
ways derivatives can help us understand the behavior of a function. The first derivative
can tell us whether a function is increasing or decreasing and locate maximum and mini-
mum points. The second derivative can tell us whether the graph of the function is con-
cave upward or concave downward and locate points of inflection. We’ve reviewed how
to use derivatives to determine the velocity and acceleration of an object in motion along
a line and to describe relationships among rates of change.

For BC Calculus students, this chapter reviewed finding slopes of curves defined
parametrically or in polar form. We have also reviewed the use of vectors to describe the
position, velocity, and acceleration of objects in motion along curves.
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Practice Exercises
Part A. Directions: Answer these questions without using your calculator.

1. The slope of the curve y3 – xy2 = 4 at the point where y = 2 is

(A) –2 (B) (C) (D) (E) 2

2. The slope of the curve y2 – xy – 3x = 1 at the point (0, –1) is

(A) –1 (B) –2 (C) +1 (D) 2 (E) –3

3. The equation of the tangent to the curve y = x sin x at the point is

(A) y = x – U (B) y = (C) y = U – x

(D) y = x + (E) y = x

4. The tangent to the curve of y = xe–x is horizontal when x is equal to

(A) 0 (B) 1 (C) –1 (D) (E) none of these

5. The minimum value of the slope of the curve y = x5 + x3 – 2x is

(A) 0 (B) 2 (C) 6 (D) –2 (E) none of these

6. The equation of the tangent to the hyperbola x2 – y2 = 12 at the point (4, 2) on the
curve is

(A) x – 2y + 6 = 0 (B) y = 2x (C) y = 2x – 6

(D) y = (E) x + 2y = 6

7. The tangent to the curve y2 – xy + 9 = 0 is vertical when

(A) y = 0 (B) y = ± (C) y = 

(D) y = ±3 (E) none of these

8. The best approximation, in cubic inches, to the increase in volume of a sphere when
the radius is increased from 3 to 3.1 in. is

(A) (B) 0.04π (C) 1.2π (D) 3.6π (E) 36π

9. When x = 3, the equation 2x2 – y3 = 10 has the solution y = 2. When x = 3.04, y !

(A) 1.6 (B) 1.96 (C) 2.04 (D) 2.14 (E) 2.4

0 04
3

. π
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1
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π
2

π
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π π
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10. If the side e of a square is increased by 1%, then the area is increased approximately 

(A) 0.02e (B) 0.02e2 (C) 0.01e2 (D) 1% (E) 0.01e

11. The edge of a cube has length 10 in., with a possible error of 1%. The possible error,
in cubic inches, in the volume of the cube is

(A) 3 (B) 1 (C) 10 (D) 30 (E) none of these

12. The function f(x) = x4 – 4x2 has

(A) one relative minimum and two relative maxima
(B) one relative minimum and one relative maximum
(C) two relative maxima and no relative minimum
(D) two relative minima and no relative maximum
(E) two relative minima and one relative maximum

13. The number of inflection points of the curve in Question 12 is

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

14. The maximum value of the function y = –4 is

(A) 0 (B) –4 (C) 2 (D) –2 (E) none of these

15. The total number of local maximum and minimum points of the function whose
derivative, for all x, is given by f !(x) = x(x – 3)2 (x + 1)4 is

(A) 0 (B) 1 (C) 2 (D) 3 (E) none of these

16. For which curve shown below are both f ! and f !! negative?

17. For which curve shown in question 16 is f !! positive but f ! negative?

(A) (B)

(D) (E)

(C)

2 − x
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In Questions 18–21, the position of a particle moving along a straight line is given by 
s = t3 – 6t2 + 12t – 8.

18. The distance s is increasing for

(A) t < 2 (B) all t except t = 2 (C) 1 < t < 3
(D) t < 1 or t > 3 (E) t > 2

19. The minimum value of the speed is

(A) 1 (B) 2 (C) 3 (D) 0 (E) none of these

20. The acceleration is positive

(A) when t > 2 (B) for all t, t | 2 (C) when t < 2
(D) for 1 < t < 3 (E) for 1 < t < 2

21. The speed of the particle is decreasing for

(A) t > 2 (B) t < 3 (C) all t
(D) t < 1 or t > 2 (E) none of these

In Questions 22–24, a particle moves along a horizontal line and its position at time t is 
s = t4 – 6t3 + 12t2 + 3.

22. The particle is at rest when t is equal to

(A) 1 or 2 (B) 0 (C) (D) 0, 2, or 3 (E) none of these

23. The velocity, v, is increasing when

(A) t > 1 (B) 1 < t < 2 (C) t < 2
(D) t < 1 or t > 2 (E) t > 0

24. The speed of the particle is increasing for

(A) 0 < t < 1 or t > 2 (B) 1 < t < 2 (C) t < 2
(D) t < 0 or t > 2 (E) t < 0

25. The displacement from the origin of a particle moving on a line is given by s = 
t4 – 4t3. The maximum displacement during the time interval –2 " t " 4 is

(A) 27 (B) 3 (C) 12 + 3
(D) 48 (E) none of these

26. If a particle moves along a line according to the law s = t5 + 5t4, then the number of
times it reverses direction is

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

3

9
4
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In Questions 27–30, R = 3 cos ti + 2 sin tj is the (position) vector xi + yj from the 

origin to a moving point P(x, y) at time t.

27. A single equation in x and y for the path of the point is

(A) x2 + y2 = 13 (B) 9x2 + 4y2 = 36 (C) 2x2 + 3y2 = 13
(D) 4x2 + 9y2 = 1 (E) 4x2 + 9y2 = 36

28. When t = 3, the speed of the particle is

(A) (B) 2 (C) 3 (D) U (E)

29. The magnitude of the acceleration when t = 3 is

(A) 2 (B) (C) 3 (D) (E) U

30. At the point where t = , the slope of the curve along which the particle moves is

(A) (B) (C)

(D) (E) none of these

31. A balloon is being filled with helium at the rate of 4 ft3/min. The rate, in square feet per 

minute, at which the surface area is increasing when the volume is ft3 is

(A) 4U (B) 2 (C) 4 (D) 1 (E) 2U

32. A circular conical reservoir, vertex down, has depth 20 ft and radius of the top 10 ft.

Water is leaking out so that the surface is falling at the rate of ft/hr. The rate, in cubic

feet per hour, at which the water is leaving the reservoir when the water is 8 ft deep is

(A) 4U (B) 8U (C) 16U (D) (E)

33. A local minimum value of the function y = is

(A) (B) 1 (C) –1 (D) e (E) 0

34. The area of the largest rectangle that can be drawn with one side along the x-axis
and two vertices on the curve of y = is

(A) (B) (C) (D) (E) 2
2e

1
2e

2
e

2e2
e

e x− 2

1
e

e
x

x

1
8π
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4π

1
2

32
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π
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3
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3

− 3
2
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2
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35. A line is drawn through the point (1, 2) forming a right triangle with the positive 
x- and y-axes. The slope of the line forming the triangle of least area is

(A) –1 (B) –2 (C) –4 (D) (E) –3

36. The point(s) on the curve x2 – y2 = 4 closest to the point (6, 0) is (are)

(A) (2, 0) (B) ( , ±1) (C) (3, )

(D) (E) none of these

37. The sum of the squares of two positive numbers is 200; their minimum product is

(A) 100 (B) (C) 28

(D) (E) none of these

38. The first-quadrant point on the curve y2x = 18 that is closest to the point (2, 0) is

(A) (2, 3) (B) (6, ) (C) (3, )

(D) (1, 3 ) (E) none of these

39. If h is a small negative number, then the best approximation for is

(A) 3 + (B) 3 – (C)

(D) (E) 3 – 

40. If f(x) = xe–x, then at x = 0

(A) f is increasing (B) f is decreasing (C) f has a relative maximum
(D) f has a relative minimum (E) f ! does not exist

41. A function f has a derivative for each x such that "x" < 2 and has a local minimum at
(2, –5). Which statement below must be true?

(A) f !(2) = 0.
(B) f ! exists at x = 2.
(C) The graph is concave up at x = 2.
(D) f !(x) < 0 if x < 2, f !(x) > 0 if x > 2.
(E) None of the preceding is necessarily true.

42. The height of a rectangular box is 10 in. Its length increases at the rate of 2 in./sec;
its width decreases at the rate of 4 in./sec. When the length is 8 in. and the width is
6 in., the rate, in cubic inches per second, at which the volume of the box is chang-
ing is

(A) 200 (B) 80 (C) –80 (D) –200 (E) –20

43. The tangent to the curve x3 + x2y + 4y = 1 at the point (3, –2) has slope

(A) –3 (B) (C) (D) (E) − 15
13

− 11
9

− 27
13

− 23
9

h
9

–
h
27

h
27

h
27

h
27

273 + h

2

63

24 14

25 7

 ( , )13 3±

± 55

− 1
2
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44. If f(x) = ax4 + bx2 and ab > 0, then

(A) the curve has no horizontal tangents
(B) the curve is concave up for all x
(C) the curve is concave down for all x
(D) the curve has no inflection point
(E) none of the preceding is necessarily true

45. A function f is continuous and differentiable on the interval [0,4], where f ! is posi-
tive but f !! is negative. Which table could represent points on f?

(A) x 0 1 2 3 4
y 10 12 14 16 18

(B) x 0 1 2 3 4
y 10 12 15 19 24

(C) x 0 1 2 3 4
y 10 18 24 28 30

(D) x 0 1 2 3 4
y 30 28 24 18 10

(E) x 0 1 2 3 4
y 24 19 15 12 10

46. The equation of the tangent to the curve with parametric equations x = 2t + 1, y = 3 – t3

at the point where t = 1 is

(A) 2x + 3y = 12 (B) 3x + 2y = 13 (C) 6x + y = 20
(D) 3x – 2y = 5 (E) none of these

47. Approximately how much less than 4 is ?

(A) (B) (C) (D) (E) 1

48. The best linear approximation for f (x) = tan x near x = is

(A) 1 + (x – ) (B) 1 + (x – ) (C) 1 + (x – )

(D) 1 + 2(x – ) (E) 2 + 2(x – )

49. When h is near zero, ekh, using the tangent-line approximation, is approximately

(A) k (B) kh (C) 1 (D) 1 + k (E) 1 + kh

π
4

π
4

π
4

2
π
4

π
4

1
2

π
4

2
3

1
3

1
16

1
48

633
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50. If f(x) = cx2 + dx + e for the function shown in the graph, then

(A) c, d, and e are all positive
(B) c > 0, d < 0, e < 0
(C) c > 0, d < 0, e > 0
(D) c < 0, d > 0, e > 0
(E) c < 0, d < 0, e > 0

Part B. Directions: Some of the following questions require the use of a graphing 
calculator.

51. The point on the curve y = at which the normal is parallel to the line y = 
–3x + 6 is

(A) (4, 3) (B) (0, 1) (C) (1, )
(D) (4, –3) (E) (2, )

52. The equation of the tangent to the curve x2 = 4y at the point on the curve where x = –2 is

(A) x + y – 3 = 0 (B) y – 1 = 2x(x + 2) (C) x – y + 3 = 0
(D) x + y – 1 = 0 (E) x + y + 1 = 0

53. The table shows the velocity at time t of an object moving along a line. Estimate the
acceleration (in ft/sec2) at t = 6 sec.

t (sec) 0 4 8 10
vel. 18 16 10 0

(A) –6 (B) –1.8 (C) –1.5 (D) 1.5 (E) 6

5
3

2 1x +

x

y

f(x)
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Applications of Differential Calculus 199

Use the graph shown, sketched on [0, 7], for Questions 54–56.

54. From the graph it follows that

(A) f is discontinuous at x = 4
(B) f is decreasing for 4 < x < 7
(C) f is constant for 0 < x < 4
(D) f has a local maximum at x = 0
(E) f has a local minimum at x = 7

55. Which statement best describes f at x = 5?

(A) f has a root. (B) f has a maximum. (C) f has a minimum.
(D) The graph of f has a point of inflection. (E) none of these

56. For which interval is the graph of f concave downward?

(A) (0,4) (B) (4,5) (C) (5,7)
(D) (4,7) (E) none of these

Use the graph shown for Questions 57–63. It shows the velocity of an object moving
along a straight line during the time interval 0 # t # 5.

57. The object attains its maximum speed when t =

(A) 0 (B) 1 (C) 2 (D) 3 (E) 5

t (sec)

v (ft/sec)

1 2 3 4 5

–5

–10

5

10

f !

1 2 3 4 5 6 7
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58. The speed of the object is increasing during the time interval

(A) (0,1) (B) (1,2) (C) (0,2) (D) (2,3) (E) (3,5)

59. The acceleration of the object is positive during the time interval

(A) (0,1) (B) (1,2) (C) (0,2) (D) (2,3) (E) (3,5)

60. How many times on 0 < t < 5 is the object’s acceleration undefined?

(A) none (B) 1 (C) 2 (D) 3 (E) more than 3

61. During 2 < t < 3 the object’s acceleration (in ft/sec2) is

(A) –10 (B) –5 (C) 0 (D) 5 (E) 10

62. The object is furthest to the right when t =

(A) 0 (B) 1 (C) 2 (D) 3 (E) 5

63. The object’s average acceleration (in ft/sec2) for the interval 0 # t # 3 is

(A) –15 (B) –5 (C) –3 (D) –1 (E) none of these

64. The line y = 3x + k is tangent to the curve y = x3 when k is equal to

(A) 1 or –1 (B) 0 (C) 3 or –3 (D) 4 or –4 (E) 2 or –2

65. The two tangents that can be drawn from the point (3,5) to the parabola y = x2 have
slopes

(A) 1 and 5 (B) 0 and 4 (C) 2 and 10

(D) 2 and (E) 2 and 4

66. The table shows the velocity at various times of an object moving along a line. An
estimate of its acceleration (in ft/sec2) at t = 1 is

t (sec) 1.0 1.5 2.0 2.5
v (ft/sec) 12.2 13.0 13.4 13.7

(A) 0.8 (B) 1.0 (C) 1.2 (D) 1.4 (E) 1.6

For Questions 67 and 68, f !(x) = x sin x – cos x for 0 < x < 4.

67. f has a local maximum when x is approximately

(A) 0.9 (B) 1.2 (C) 2.3 (D) 3.4 (E) 3.7

68. The graph of f has a point of inflection when x is approximately

(A) 0.9 (B) 1.2 (C) 2.3 (D) 3.4 (E) 3.7

− 1
2
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In Questions 69–72, the motion of a particle in a plane is given by the pair of equations 
x = 2t and y = 4t – t2.

69. The particle moves along

(A) an ellipse (B) a circle (C) a hyperbola
(D) a line (E) a parabola

70. The speed of the particle at any time t is

(A) (B) (C)

(D) (E)

71. The minimum speed of the particle is

(A) 2 (B) 2 (C) 0 (D) 1 (E) 4

72. The acceleration of the particle

(A) depends on t
(B) is always directed upward
(C) is constant both in magnitude and in direction
(D) never exceeds 1 in magnitude
(E) is none of these

73. If a particle moves along a curve with constant speed, then

(A) the magnitude of its acceleration must equal zero
(B) the direction of acceleration must be constant
(C) the curve along which the particle moves must be a straight line
(D) its velocity and acceleration vectors must be perpendicular
(E) the curve along which the particle moves must be a circle

74. A particle is moving on the curve of y = 2x – ln x so that = –2 at all times t. At the

point (1,2), is

(A) 4 (B) 2 (C) –4 (D) 1 (E) –2

dy
dt

dx
dt

2

2 3( )− t8 2( )t −

2 2 52t t− +2 4 52t t− +6 2− t

BC ONLY
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202 AP Calculus

Use the graph of f ! on [0,5], shown below, for Questions 75 and 76.

75. f has a local minimum at x =

(A) 0 (B) 1 (C) 2 (D) 3 (E) 5

76. The graph of f has a point of inflection at x =

(A) 1 only (B) 2 only (C) 3 only
(D) 2 and 3 only (E) none of these

77. It follows from the graph of f !, shown at the 
right, that 

(A) f is not continuous at x = a
(B) f is continuous but not differentiable 

at x = a
(C) f has a relative maximum at x = a
(D) The graph of f has a point of 

inflection at x = a
(E) none of these

78. A vertical circular cylinder has radius r ft and height h ft. If the height and radius
both increase at the constant rate of 2 ft/sec, then the rate, in square feet per second,
at which the lateral surface area increases is

(A) 4Ur (B) 2U(r + h) (C) 4U(r + h) (D) 4Urh (E) 4Uh

79. A tangent drawn to the parabola y = 4 – x2 at the point (1, 3) forms a right triangle
with the coordinate axes. The area of the triangle is

(A) (B) (C) (D) 1 (E)

80. Two cars are traveling along perpendicular roads, car A at 40 mph, car B at 60 mph. 
At noon, when car A reaches the intersection, car B is 90 mi away, and moving toward
it. At 1 P.M. the rate, in miles per hour, at which the distance between the cars is 
changing is

(A) –40 (B) 68 (C) 4 (D) –4 (E) 40

25
4

25
2

5
2

5
4

f '

x
a

f '

1 2 3 4 5
x
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81. For Question 80, if t is the number of hours of travel after noon, then the cars are
closest together when t is

(A) 0 (B) (C) (D) (E)

The graph for Questions 82 and 83 shows the velocity of an object moving along a
straight line during the time interval 0 # t # 12.

82. For what t does this object attain its maximum acceleration?

(A) 0 < t < 4 (B) 4 < t < 8 (C) t = 5 (D) t = 8 (E) t = 12

83. The object reverses direction at t =

(A) 4 only (B) 5 only (C) 8 only
(D) 5 and 8 (E) none of these

84. The graph of f ! is shown below. If we know that f(2) = 10, then the local linearization
of f at x = 2 is f(x) !

(A) + 2 (B) + 9 (C) 3x – 3

(D) 3x + 4 (E) 10x – 17

f '

2

2

64

4

x

x
2

x
2

v

12108642
t

(ft/sec)

14
13

3
2

9
5

27
26
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85. Given f ! as graphed, which could be the graph of f ?

f

1 2 3
x

(A)

f

1 2 3
x

(C) f

1 2 3
x

(D) f

1 2 3
x

(E)

f

1 2 3
x

(B)

1 2 3
x

f '
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Use the following graph for Questions 86–88.

86. At which labeled point do both and equal zero?

(A) P (B) Q (C) R (D) S (E) T

87. At which labeled point is positive and equal to zero?

(A) P (B) Q (C) R (D) S (E) T

88. At which labeled point is equal to zero and negative?

(A) P (B) Q (C) R (D) S (E) T

89. If f(6) = 30 and f !(x) = , estimate f(6.02) using the line tangent to f at x = 6.

(A) 29.92 (B) 30.02 (C) 30.08
(D) 34.00 (E) none of these

90. The tangent line approximation for f(x) = near x = –3 is 

(A) 5 – (x – 3) (B) 5 + (x – 3) (C) 5 – (x + 3)

(D) 3 – (x – 3) (E) 3 + (x + 3)3
5

5
3

3
5

3
5

3
5

x2 16+

x
x

2

3+

d y
dx

2

2

dy
dx

d y
dx

2

2

dy
dx

d y
dx

2

2

dy
dx

x

y

0

P

Q

R

S

T
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Answer Key
1. D 21. E 41. E 61. A 81. B
2. A 22. B 42. D 62. C 82. B
3. E 23. D 43. E 63. B 83. B
4. B 24. A 44. D 64. E 84. D
5. D 25. D 45. C 65. C 85. C
6. C 26. C 46. B 66. E 86. C
7. D 27. E 47. A 67. D 87. D
8. D 28. A 48. D 68. C 88. E
9. C 29. B 49. E 69. E 89. C

10. B 30. D 50. E 70. B 90. C
11. D 31. C 51. A 71. A
12. E 32. B 52. E 72. C
13. C 33. D 53. C 73. D
14. A 34. A 54. E 74. E
15. B 35. B 55. B 75. B
16. E 36. C 56. D 76. D
17. B 37. E 57. D 77. D
18. B 38. C 58. D 78. C
19. D 39. A 59. E 79. E
20. A 40. A 60. D 80. D

Answers Explained
1. (D) Substituting y = 2 yields x = 1. We find y! implicitly.

Replace x by 1 and y by 2; solve for y!.

2. (A) Replace x by 0 and y by –1; solve for y!.

3. (E) Find the slope of the curve at x = : y! = x cos x + sin x. At x = ,

y! = • 0 + 1. The equation is y – = 1 .

4. (B) Since y! = e–x(1 – x) and e–x > 0 for all x, y! = 0 when x = 1.

5. (D) The slope y! = 5x4 + 3x2 – 2. Let g = y!. Since g!(x) = 20x3 + 6x = 2x(10x2 + 3),
g!(x) = 0 only if x = 0. Since g$(x) = 60x2 + 6, g$ is always positive, assuring
that x = 0 yields the minimum slope. Find y! when x = 0.

6. (C) Since 2x – 2yy! = 0, y! = . At (4, 2), y! = 2. The equation of the tangent 

at (4, 2) is y – 2 = 2(x – 4).

7. (D) Since y! = , the tangent is vertical for x = 2y. Substitute in the given

equation and solve for y.

8. (D) Since V = Ur3, therefore, dV = 4πr 2dr. The approximate increase in 

volume is dV ≈ 4π(32)(0.1) in3.

4
3

y
y x2 −

x
y

x − π



2

π
2

π
2

π
2

π
2

2 3 0yy xy y′ − ′ + − =( ) .

3 2 0 3 2 02 2 2 2y y xyy y y xy y y′ − ′ + = − ′ − =( ) ; ( ) .
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9. (C) Differentiating implicitly yields 4x – 3y 2y! = 0. So y! = . The linear 

approximation for the true value of y when x changes from 3 to 3.04 is

Since it is given that, when x = 3, y = 2, the approximate value of y is

or
.

10. (B) We want to approximate the change in area of the square when a side of
length e increases by 0.01e. The answer is

.

11. (D) Since V = e3, V ! = 3e2. Therefore at e = 10, the slope of the tangent line is
300. The change in volume is approximately 300(±0.1) = 30 in.3

12. (E) f !(x) = 4x3 – 8x = 4x(x2 – 2). f ! = 0 if x = 0 or .
f "(x) = 12x2 – 8; f " is positive if x = , negative if x = 0.

13. (C) Since f "(x) = 4(3x2 – 2), it equals 0 if x = ± . Since f " changes sign as x

increases through each of these, both are inflection points.

14. (A) The domain of y is {x ! x # 2}. Note that y is negative for each x in the
domain except 2, where y = 0.

15. (B) f !(x) changes sign only as x passes through zero.

16. (E) The graph must be decreasing and concave downward.

17. (B) The graph must be concave upward but decreasing.

18. (B) The distance is increasing when v is positive. Since v = = 3(t – 2)2, 

v > 0 for all t | 2.

19. (D) The speed = !v!. From Question 18, !v! = v. The least value of v is 0.

20. (A) The acceleration a = . From Question 18, a = 6(t – 2).

21. (E) The speed is decreasing when v and a have opposite signs. The answer is 
t < 2, since for all such t the velocity is positive while the acceleration is 
negative. For t > 2, both v and a are positive.

22. (B) The particle is at rest when v = 0; v = 2t(2t2 – 9t + 12) = 0 only if t = 0.
Note that the discriminant of the quadratic factor (b2 – 4ac) is negative.

23. (D) Since a = 12(t – 1)(t – 2), we check the signs of a in the intervals t < 1, 
1 < t < 2, and t > 2. We choose those where a > 0.

dv
dt

ds
dt

2
3

± 2
± 2

′A e e e e( )( . ) ( . )0 01 2 0 01or

2
12
12

0 04 2 04+ =• ( . ) .

2
4

3
0 042+ x

y at (3,2)

• ( . )

y y
xat at point (3,2)=

+ ′ −
3

3 04 3• ( . ).

4
3 2

x
y
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24. (A) From Questions 22 and 23 we see that v > 0 if t > 0 and that a > 0 if t < 1
or t > 2. So both v and a are positive if 0 < t < 1 or t > 2. There are no val-
ues of t for which both v and a are negative.

25. (D) See the figure, which shows the motion of the particle during the time inter-
val –2 # t # 4. The particle is at rest when t = 0 or 3, but reverses direction
only at 3. The endpoints need to be checked here, of course. Indeed, the maxi-
mum displacement occurs at one of those, namely, when t = –2.

26. (C) Since v = 5t3(t + 4), v = 0 when t = –4 or 0. Note that v does change sign at each
of these times.

27. (E) Since x = 3 cos t and y = 2 sin t, we note that = 1.

28. (A) Note that v = –U sin ti + cos tj. At t = 3,

29. (B) a = – cos ti – sin tj. At t = 3,

30. (D) The slope of the curve is the slope of v, namely, . At t = , the slope
is equal to

.

31. (C) Since V = Ur3, = 4Ur2 . Since = 4, = . When V = , 

r = 2 and = .

when r = 2, = 8U(2) = 4.
1

4π






dS
dt

S r
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dr
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32. (B) See Figure N4–22 on page 189. Replace the printed measurements of the 

radius and height by 10 and 20, respectively. We are given here that r = 

and that = . Since V = Ur 2h, we have V = , so

.

Replace h by 8.

33. (D) (x | 0). Since y! = 0 if x = 1 and changes from negative to pos-

itive as x increases through 1, x = 1 yields a minimum. Evaluate y at x = 1.

34. (A) The domain of y is –h < x < h. The graph of y, which is nonnegative, is
symmetric to the y-axis. The inscribed rectangle has area A = . 

Thus , which is 0 when the positive value of x is . This 

value of x yields maximum area. Evaluate A.

35. (B) See the figure. If we let m be the slope of the line, then its equation is y – 2 =
m(x – 1) with intercepts as indicated in the figure.

The area A of the triangle is given by

Then and equals 0 when m = ±2; m must be negative.

36. (C) Let q = (x – 6)2 + y2 be the quantity to be minimized. Then

q = (x – 6)2 + (x2 – 4);

q! = 0 when x = 3. Note that it suffices to minimize the square of the distance.

37. (E) Minimize, if possible, xy, where x2 + y 2 = 200 (x, y > 0). The derivative of 

the product is , which equals 0 for x = 10. But the signs of the 

derivative as x increases through 10 show that 10 yields a maximum product.
No minimum exists.
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−

x

x

dA
dm m

= −





1
2

4
1

2

A m
m m

m= − −



 = − −





1
2

2 1
2 1

2
4

4
( ) .

x

y

0

(0,2–m)

(1,2)

(1– 2,0)m 

2
2

′ = −A x
ex
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38. (C) Minimize q = (x – 2)2 + . Since

,

q! = 0 if x = 3. The signs of q! about x = 3 assure a minimum.

39. (A) The best approximation for when h is small is the local linear (or 

tangent line) approximation. If we let f(h) = , then f !(h) = 

and f !(0) = . The approximation for f(h) is f(0) + f !(0) • h, which equals 

3 + h.

40. (A) Since f !(x) = e–x(1 – x), f !(0) > 0.

41. (E) The graph shown serves as a counterexample for A–D.

42. (D) Since V = 10!w, V! = 10 = 10(8 • –4 + 6 • 2).

43. (E) We differentiate implicitly: . Then y! = . 

At (3,–2), y! = .

44. (D) Since ab > 0, a and b have the same sign; therefore f $(x) = 12ax2 + 2b
never equals 0. The curve has one horizontal tangent at x = 0.

45. (C) Since the first derivative is positive, the function must be increasing.
However, the negative second derivative indicates that the rate of increase
is slowing down, as seen in table C. 

46. (B) Since , therefore, at t = 1, = . Also, x = 3 and y = 2.− 3
2

dy
dx

dy
dx

t= − 3
2

2

− = −−
+

27 12
9 4

15
13

− +
+

3 2
4

2

2

x xy
x

3 2 4 02 2x x y xy y+ ′ + + ′ =

 
"

"dw
dt

w
d
dt

+





f

(2,–5)

1
27

1
3 9•

1
3 27 2 3( )+ h273 + h

273 + h

′ = − − = − −
q x

x
x x

x
2 2

18 2 2 9
2

3 2

2( )
( )

18
x
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47. (A) Let f(x) = x1/3, and find the slope of the tangent line at (64, 4). Since f !(x) = 

x –2/3, f !(64) = . If we move one unit to the left of 64, the tangent line 

will drop approximately unit.

48. (D) tan x ! tan + sec2 = 1 + 2

49. (E)

50. (E) Since the curve has a positive y-intercept, e > 0. Note that f !(x) = 2cx + d and
f "(x) = 2c. Since the curve is concave down, f "(x) < 0, implying that c < 0.
Since the curve is decreasing at x = 0, f !(0) must be negative, implying, since
f !(0) = d, that d < 0. Therefore c < 0, d < 0, and e > 0.

51. (A) Since the slope of the tangent to the curve is y ! = , the slope of the 

normal is . So = –3 and 2x + 1 = 9.

52. (E) The slope y ! = ; at the given point y ! = = –1 and y = 1. The equa-

tion is therefore

y – 1 = –1(x + 2) or x + y + 1 = 0.

53. (C) ft/sec2.

54. (E) Since f ! < 0 on 5 # x < 7, the function decreases as it approaches the right
endpoint.

55. (B) For x < 5, f ! > 0, so f is increasing; for x > 5, f is decreasing.

56. (D) The graph of f being concave downward implies that f " < 0, which implies
that f ! is decreasing.

57. (D) Speed is the magnitude of velocity; at t = 3, speed = 10 ft/sec.

58. (D) Speed increases from 0 at t = 2 to 10 at t = 3; it is constant or decreasing
elsewhere.

59. (E) Acceleration is positive when the velocity increases.

60. (D) Acceleration is undefined when velocity is not differentiable. Here that
occurs at t = 1, 2, 3.

61. (A) Acceleration is the derivative of velocity. Since the velocity is linear, its deriva-
tive is its slope.

62. (C) Positive velocity implies motion to the right (t < 2); negative velocity 
(t > 2) implies motion to the left.

 
a v
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∆
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63. (B) The average rate of change of velocity is ft/sec2.

64. (E) The slope of y = x3 is 3x2. It is equal to 3 when x = ±1. At x = 1, the equation
of the tangent is

y – 1 = 3(x – 1) or y = 3x + 2.
At x = –1, the equation is

y + 1 = 3(x + 1) or y = 3x + 2.

65. (C) Let the tangent to the parabola from (3, 5) meet the curve at (x1, y1). Its 
equation is y – 5 = 2x1(x – 3). Since the point (x1, y1) is on both the tangent
and the parabola, we solve simultaneously:

y1 – 5 = 2x1(x1 – 3) and y1 = 

The points of tangency are (5, 25) and (1, 1). The slopes, which equal 2x1,
are 10 and 2.

66. (E) ft/sec2.

67. (D) The graph of f !(x) = x sin x – cos x is drawn here in the window [0,4] ¥ [–3,3]:

A local maximum exists where f ! changes from positive to negative; use your
calculator to approximate a.

68. (C) f $ changes sign when f ! changes from increasing to decreasing (or vice
versa). Again, use your calculator to approximate the x-coordinate at b.

69. (E) Eliminating t yields the equation y = x2 + 2x.

70. (B) .

71. (A) Since , = 0 if t = 2. We note that, as t

increases through 2, the signs of "v"! are –, 0, +, assuring a minimum of 
"v" at t = 2. Evaluate "v" at t = 2.

d
dt

t

t t

v = −
− +

2 4

4 52
v = − +2 4 52t t

= + −2 4 22 2( )tv = 



 + 





dx
dt

dy
dt

2 2

− 1
4

a

b

 
a v

t
v v! ∆

∆
= =− −( . ) ( . )

.
. .

.
1 5 1 0

0 5
13 2 12 2

0 5

x1
2

v v( ) ( )3 0
3 0

10 5
3

−
−

− −
−

=
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72. (C) The direction of a is tan-1 . Since = 0 and = –2, the acceler-

ation is always directed downward. Its magnitude, , is 2 for all t.

73. (D) Using the notations vx, vy, ax, and ay, we are given that k,
where k is a constant. Then

.

74. (E) .

75. (B) A local minimum exists where f changes from decreasing ( f ! < 0) to
increasing ( f ! > 0). Note that f has local maxima at both endpoints, x = 0
and x = 5.

76. (D) See Answer 68.

77. (D) f ! changes from increasing ( f $ > 0) to decreasing ( f $ < 0). Note that f is
differentiable at a (because f !(a) exists) and therefore continuous at a.

78. (C) We know that = = 2. Since S = 2Urh,

.

79. (E) The equation of the tangent is y = –2x + 5. Its intercepts are and 5.

80. (D) See the figure. At noon, car A is at O, car B at N; the cars are shown t hours 

after noon. We know that = –60 and that = 40. Using s2 = x2 + y2, we get

.

At 1 P.M., x = 30, y = 40, and s = 50.

90

OBN

s y

A

x

ds
dt

x
dx
dt

y
dy
dt

s
x y
s

=
+

= − +60 40

dy
dt

dx
dt

5
2

dS
dt

r
dh
dt

h
dr
dt

= π +



2

dr
dt

dh
dt
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dt x

dx
dt x

= − = − −









2 2 21 1 ( )

d
dt

v a v a v
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=
+
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2 2
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d y
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2

2
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2

2

d y
dt
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2
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7_3679_APCalc_08Chapter4B  10/3/08  4:24 PM  Page 213



214 AP Calculus

81. (B) (from Question 80) is zero when y = x. Note that x = 90 – 60t and 

y = 40t.

82. (B) Maximum acceleration occurs when the derivative (slope) of velocity is
greatest.

83. (B) The object changes direction only when velocity changes sign. Velocity
changes sign from negative to positive at t = 5.

84. (D) From the graph, f !(2) = 3, and we are told the line passes through (2,10).
We therefore have f(x) ! 10 + 3(x – 2) = 3x + 4.

85. (C) At x = 1 and 3, f !(x) = 0; therefore f has horizontal tangents.
For x < 1, f ! > 0; therefore f is increasing.
For x > 1, f ! < 0, so f is decreasing.
For x < 2, f ! is decreasing, so f $ < 0 and the graph of f is concave 
downward.
For x > 2, f ! is increasing, so f $ > 0 and the graph of f is concave 
upward.

86. (C) Note that = 0 at Q, R, and T. At Q, > 0; at T, < 0.

87. (D) Only at S does the graph both rise and change concavity.

88. (E) Only at T is the tangent horizontal and the curve concave down.

89. (C) Since f !(6) = 4, the equation of the tangent at (6, 30) is y – 30 = 4(x – 6).
Therefore f(x) ! 4x + 6 and f(6.02) ! 30.08.

90. (C) (x + 3) = 5 – (x + 3)3
5

( )

( )

−
− +

3

3 162 x2 16 9 16+ + +!

d y
dx

2

2

d y
dx

2

2

dy
dx

3
2

ds
dt
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A. ANTIDERIVATIVES
The antiderivative or indefinite integral of a function f(x) is a function F(x) whose deriv-
ative is f(x). Since the derivative of a constant equals zero, the antiderivative of f(x) is
not unique; that is, if F(x) is an integral of f(x), then so is F(x) + C, where C is any con-
stant. The arbitrary constant C is called the constant of integration. The indefinite 

integral of f(x) is written as ! f(x) dx; thus

! f(x) dx = F(x) + C if = f(x).

The function f(x) is called the integrand. The Mean Value Theorem can be used to show
that, if two functions have the same derivative on an interval, then they differ at most by a 

constant; that is, if , then

F(x) – G(x) = C (C a constant).

B. BASIC FORMULAS
Familiarity with the following fundamental integration formulas is essential.

!k f(x) dx = k !f(x) dx (k | 0) (1)

![ f(x) + g(x)] dx = !f(x) dx + !g(x) dx (2)

!un du = + C (n | –1) (3)
u
n

n +

+

1

1

dF x
dx

dG x
dx

( ) ( )=

dF x
dx
( )

Antidifferentiation CHAPTER5
Concepts and Skills
In this chapter, we review

• indefinite integrals,
• formulas for antiderivatives of basic functions,
• and techniques for finding antiderivatives (including substitution). 

For BC Calculus students, we review two important techniques of integration:

• integration by parts,
• and integration by partial fractions.

Antiderivative

Indefinite
integral
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216 AP Calculus

! (4)

!cos u du = sin u + C (5)

!sin u du = –cos u + C (6)

!tan u du = ln + C (7)

or –ln + C

!cot u du = ln + C (8)

or – ln + C

!sec2 u du = tan u + C (9)

!csc2 u du = – cot u + C (10)

!sec u tan u du = sec u + C (11)

!csc u cot u du = – csc u + C (12)

!sec u du = ln + C (13)

!csc u du = ln + C (14)

!eu du = eu + C (15)

!au du = + C (a > 0, a | 1) (16)

! = sin–1 u + C (17)

or arcsin u + C

! = tan–1 u + C (18)

or arctan u + C

! = sec–1 |u| + C (19)

or arcsec |u| + C

All the references in the following set of examples are to the preceding basic
formulas. In all of these, whenever u is a function of x, we define du to be u!(x) dx;
when u is a function of t, we define du to be u!(t) dt; and so on.

du
u u2 1−

du
u1 2+

du
u1 2−

a
a

u

ln

csc cotu u−

sec tanu u+

csc u

sin u

cos u

secu

= +ln u Cdu
u
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Antidifferentiation 217

EXAMPLE 1

!5x dx = 5 !x dx by (1), 

= 5 + C by (3).

EXAMPLE 2

! dx = ! dx

= !x4 dx + !x2/3 dx – 2 !x–2 dx – !x–1/3 dx by (1) and (2)

= + C by (3) 

= x5/3 + x2/3 + C.

EXAMPLE 3

Similarly, !(3 – 4x + 2x3) dx = !3 dx – 4 !x dx + 2 !x3 dx

= 3x – + + C

= 3x – 2x2 + + C.

EXAMPLE 4

!2(1 – 3x)2dx is integrated most efficiently by using formula (3) with u = 1 – 3x

and du = u!(x) dx = –3 dx. 

2!(1 – 3x)2 dx = !(1 – 3x)2(–3 dx)

= u3 + C by (3)

= (1 – 3x)3 + C.

EXAMPLE 5

!(2x3 – 1)5 • x2 dx = !(2x3 – 1)5 • (6x2 dx) = !u5 du, where u = 2x3 – 1 and 

du = u!(x) dx = 6x2 dx; this, by formula (3), equals 

+ C = (2x3 – 1)6 + C.1
36

1
6 6

6
•

u

1
6

1
6

− 2
9

− 2
9

2
3−

x4

2

2
4

4x4
2

2x

2 1
2x

−x5

5
3
5

+

x x x x5 5 3

5
3

1 2 3

2
35

2
1

1
3

+ − −
−

−

1
3

x x x x4 2 3 2 1 32 1
3

+ − −− −





x x
x x

4 23
2 3

2 1
3

+ − −





x2

2( )
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EXAMPLE 6

! dx = !(1 – x)1/3 dx = –!(1 – x)1/3(–1 dx) = –!u1/3 du, where u = 1 – x and 

du = –1 dx; this, by formula (3) yields + C = (1 – x)4/3 + C.

EXAMPLE 7

! dx = !(3 – 4x2)–1/2 • (x dx) = !(3 – 4x2)–1/2(–8x dx) = !u–1/2 du = 

+ C by (3) = + C.

EXAMPLE 8

! dx = 4 !(x3 – 1)–3 • x2 dx = !(x3 – 1)–3(3x2 dx) = 

+ C = + C.

EXAMPLE 9

! dx = !(1 + x1/2)4 • dx. Now let u = 1 + x1/2, and note 

that du = x1/2 dx; this gives 2!(1 + x1/2)4 = (1 + )5 + C.

EXAMPLE 10

!(2 – y)2 • dy = !(4 – 4y + y2) • y1/2 dy = !(4y1/2 – 4y3/2 + y5/2) dy

= 4 • y3/2 – 4 • • y5/2 + • y7/2 + C by (2) = y3/2 + y5/2 + y7/2 + C.

EXAMPLE 11

! dx = ! dx = + C.

EXAMPLE 12

! dx = !(1 – 2x + 3x2)–1/3(3x – 1) dx

= !(1 – 2x + 3x2)–1/3(6x – 2) dx or • (1 – 2x + 3x2)2/3 + C by (3)

= (1 – 2x + 3x2)2/3 + C.3
4

3
2

1
2

1
2

3 1

1 2 3 23

x

x x

−
− +

x
x

x
2

2
4− +





ln1
2

x
x x

− −





1 4
2

1
2

x x
x

3

2

4
2

− −

2
7

− 8
5

8
3

2
7

2
5

2
3

y

x
2
5

1

2 1 2x
dx

/







1
2

1
1 2x

( )1 4+ x
x

− 2
3

1
13 2( – )x

( )–x3 21
2

−
−

4
3

4
3

4
1

2

3 3

x
x( )−

3 4 2− x− 1
4

u1 2

1
2

− 1
8

− 1
8− 1

8

x

x3 4 2−

− 3
4

− u4 3

4
3

13 − x
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EXAMPLE 13

! dx = ! dx = ! dx = !2 dx + = 

2x – + C. This example illustrates the following principle: 

If the degree of the numerator of a rational function is not less than that of the 
denominator, divide until a remainder of lower degree is obtained.

EXAMPLE 14

! = ln + C by (4).

EXAMPLE 15

! ln + C by (4).

EXAMPLE 16

! dx = ! = ln (5 + 2 sin x) + C by (4) with 

u = 5 + 2 sin x. The absolute-value sign is not necessary here since (5 + 2 sin x) > 0
for all x.

EXAMPLE 17

! dx = ! dx = ln + C by (4).

EXAMPLE 18

! dx = ! dx (by long division) = –x – ln + C.

EXAMPLE 19

!sin (1 – 2y) dy = !sin (1 – 2y)(–2 dy) = 

[– cos (1 – 2y)] + C by (6) = cos (1 – 2y) + C.

EXAMPLE 20

!sin2 cos dx = 2! cos = sin3 + C by (3).
x
2

2
3

dx
2

x
2

sin x
2

2( )x
2

x
2

1
2− 1

2

− 1
2

1 − x− +
−





1 1

1 x
x

x1 −

1 2− ex− 1
2

−
−
2

1 2
e
e

x

x
− 1

2
e

e

x

x1 2−

1
2

2
5 2

cos
sin
x dx

x+
1
2

cos
sin
x

x5 2+

1 4 2− zzdz
z1 4

1
82−

= −

u − 3
du

u − 3

1
1x –

dx
x( – )1 2

2
1

1 2
+

−




( )x

2 4 3
2 1

2

2

x x
x x

− +
− +

2 4 3
1

2

2

x x
x

− +
−( )

7_3679_APCalc_09Chapter5A  10/3/08  4:25 PM  Page 219



220 AP Calculus

EXAMPLE 21

! dx = ! = ln + C.

EXAMPLE 22

!e tan y sec2 y dy = e tan y + C by (15) with u = tan y.

EXAMPLE 23

!ex tan ex dx = ln + C by (7) with u = ex.

EXAMPLE 24

! dz = !csc z cot z dz = –csc z + C by (12).

EXAMPLE 25

!tan t sec2 t dt = + C by (3) with u = tan t and 

du = u!(t) dt = sec2 t dt.

EXAMPLE 26

(a) ! ! ! + C by (17) with u = .

(b) ! !(9 – z2)–1/2(–2z dz) = + C by (3) = + C 

with u = 9 – z2, n = –

(c) ! = – ! = – ln "9 – z2" + C by (4) with u = 9 – z2.

(d) ! = – !(9 – z2)–2(–2z dz) = + C by (3).

(e) ! ! ! + C by (18) with u = .
z
3

1
3

1

1
3 3

3

2
1

dz
z

z+ ( )
= −tandz

z1
3 1

9
3

2
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92+
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1
2

z dz
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1
2
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−

2
9 2
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1
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− −9 2z− −1
2
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32−
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1 3
sin
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sin
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EXAMPLE 27

! = ! = ln (1 + 2 ) + C by (4) with u = 1 + 2

and du = .

EXAMPLE 28

!sin x cos x dx = sin2 x + C by (3) with u = sin x; OR = cos2 x + C by (3) 

with u = cos x; OR = cos 2x + C by (6), where we use the trigonometric

identity sin 2x = 2 sin x cos x.

EXAMPLE 29

! dx = 2!cos(x1/2)( x –1/2 dx) = 2 sin + C by (5) with u = .

EXAMPLE 30

!sin2 y dy = ! dy = + C, using the trigonometric identity

sin2 θ = (1 – cos 2θ).

EXAMPLE 31

! = ! tan–1 x2 + C by (18) with u = x2.

EXAMPLE 32

! = ! ! !

= tan–1 + C by (18) with u = .x + 2
3

x + 2
3

1
3

1
3

1 2
3

2

dx

x+ +( )
dx

x1 2
3

3 1
92

+ +
= ⋅

( )
dx
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1
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x x2 4 13+ +

1
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2
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− 1
2

1
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dx
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222 AP Calculus

EXAMPLE 33

! = ! = ! !

= sin–1 + C by (17) with u = .

EXAMPLE 34

! dx = ! ! = tan–1 + C

by (18) with u = .

EXAMPLE 35

! dx = ln (ex + e–x) + C by (4) with u = ex + e–x.

EXAMPLE 36

! dx = ! + ! = ln(x2 + 1) + tan–1 x + C by (4) and (18).

EXAMPLE 37

! = !csc2 2t dt = !csc2 2t (2 dt) = cot 2t + C by (10).

EXAMPLE 38

!cos2 4z dz = ! dz = + C, using the trig identity 

cos2 θ = (1 + cos 2θ).

EXAMPLE 39

! dx = ln (1 + sin2 x) + C by (4).sin
sin

2
1 2

x
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2

z z
2

8
16
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2

8
2
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2
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12

e e
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+

−

−
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= ⋅
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EXAMPLE 40

! = – ! = – + C by (15) with u = –x3.

EXAMPLE 41

! = !(1 + ln y)–1/2( dy) = + C by (3).

†C. INTEGRATION BY PARTIAL FRACTIONS
The method of partial fractions makes it possible to express a rational function as

a sum of simpler fractions. Here f(x) and g(x) are real polynomials in x and it is assumed

that is a proper fraction; that is, that f(x) is of lower degree than g(x). If not, we divide

f(x) by g(x) to express the given rational function as the sum of a polynomial and a proper
rational function. Thus,

,

where the fraction on the right is proper.
Theoretically, every real polynomial can be expressed as a product of (powers of)

real linear factors and (powers of) real quadratic factors.†
In the following, the capital letters denote constants to be determined. We consider

only nonrepeating linear factors. For each distinct linear factor (x – a) of g(x) we set up one 

partial fraction of the type . The techniques for determining the unknown constants

are illustrated in the following examples.

EXAMPLE 42

Find ! dx.

We factor the denominator and then set

,
(1)

where the constants A, B, and C are to be determined. It follows that

x2 – x + 4 = A(x – 1)(x – 2) + Bx(x – 2) + Cx(x – 1). (2)

x x
x x x

A
x

B
x

C
x

2 4
1 2 1 2

− +
− −

= +
−

+
−( )( )

x x
x x x

2

3 2

4
3 2
− +

− +

A
x a−

x x
x x

x
x x

3 2 2
1

2
1

− −
+

= −
−( ) ( )

f x
g x

( )
( )

f x
g x

( )
( )

2 1 + ln y1
y

dy
y y1 + ln

e x− 31
3

e x dxx− −
3

3 2( )1
3

x e dxx2 3−

†In the Topical Outline for Calculus BC, integration by partial fractions is restricted to “simple partial fractions (nonrepeating
linear factors only).”
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224 AP Calculus

Since the polynomial on the right in (2) is to be identical to the one on the left, we
can find the constants by either of the following methods:

METHOD ONE. We expand and combine the terms on the right in (2), getting

x2 – x + 4 = (A + B + C )x2 – (3A + 2B + C )x + 2A.

We then equate coefficients of like powers in x and solve simultaneously. Thus

using the coefficients of x2, we get 1 = A + B + C;
using the coefficients of x, we get –1 = –(3A + 2B + C );
using the constant coefficient, 4 = 2A

These equations yield A = 2, B = –4, C = 3.

METHOD TWO. Although equation (1) above is meaningless for x = 0, x = 1, or
x = 2, it is still true that equation (2) must hold even for these special values. We
see, in (2), that

if x = 0, then 4 = 2A and A = 2;
if x = 1, then 4 = –B and B = –4;
if x = 2, then 6 = 2C and C = 3.

The second method is shorter than the first and more convenient when the
denominator of the given fraction can be decomposed into nonrepeating linear
factors.

Finally, then, the original integral equals

!

[The symbol “C!” appears here for the constant of integration because C was used in
simplifying the original rational function.]

D. INTEGRATION BY PARTS
The Parts Formula stems from the equation for the derivative of a product:

or , or more conveniently d(uv) = udv + vdu.

Hence, udv = d(uv) – vdu and integrating gives us !udv = !d(uv) – !vdu, or 

!udv = uv – !vdu,

the Parts Formula. Success in using this important technique depends on being able 
to separate a given integral into parts u and dv so that (a) dv can be integrated, and 

(b) !vdu is no more difficult to calculate than the original integral.

d
dx

uv u dv
dx

v du
dx

( ) = +

= −
−

+ ′ln
( )

.
x x

x
C

2 3

4

2
1

2 4
1

3
2

2 4 1 3 2
x x x

dx x x x C−
−

+
−





 = − − + − + ′ln ln ln
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Antidifferentiation 225

EXAMPLE 43
To integrate !x cos x dx, we let u = x and dv = cos x dx. Then du = dx

and v = sin x. Thus, the Parts Formula yields

!x cos x dx = x sin x – !sin x dx = x sin x + cos x + C.

EXAMPLE 44
To integrate !x2ex dx, we let u = x2 and dv = ex dx. Then du = 2x dx and v = ex, so 

!x2ex dx = x2ex – !2x ex dx. We use the Parts Formula again, this time letting u = x

and dv = exdx so that du = dx and v = ex. Thus,

!x2ex dx = x2ex – 2(xex – !ex dx) = x2ex – 2xex + 2ex + C.

EXAMPLE 45
Let I = ex cos x dx. To integrate, we can let u = ex and dv = cos x dx; then du = exdx,
v = sin x. Thus,

I = ex sin x – !ex sin x dx.

To evaluate the integral on the right, again we let u = ex, dv = sin x dx, so that
du = exdx and v = – cos x. Then,

I = ex sin x – (–ex cos x + !ex cos x dx)

= ex sin x + ex cos x – I.

2I = ex (sin x + cos x),

I = ex (sin x + cos x) + C.

EXAMPLE 46

To integrate !x4 ln x dx, we let u = ln x and dv = x4 dx. Then, du = dx and v = . 

Thus,

! ! .x dx
x

x
x

C4
5 5

5 25
= − +lnx x dx

x
x4

5

5
1
5

ln ln= −

x5

5
1
x

1
2
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226 AP Calculus

THE TIC-TAC-TOE METHOD.1

This method of integrating is extremely useful when repeated integration by parts is 

necessary. To integrate !u(x)v(x) dx, we construct a table as follows:

Here the column at the left contains the successive derivatives of u(x). The column
at the right contains the successive antiderivatives of v(x) (always with C = 0); that 
is, v1(x) is the antiderivative of v(x), v2(x) is the antiderivative of v1(x), and so on. The
diagonal arrows join the pairs of factors whose products form the successive terms of 
the desired integral; above each arrow is the sign of that term. By the tic-tac-toe method,

!u(x)v(x)dx = u(x)v1(x) – u!(x)v2(x) + u!!(x)v3(x) – u!!!(x)v4(x) + . . . .

EXAMPLE 47

To integrate !x4 cos x dx by the tic-tac-toe method, we let 

u(x) = x4 and v(x) = cos x, and get the following table:

x4

4x3

12x2

24x

0

cos x

–cos x

–sin x

cos x

sin x

+

+

–

–

24

sin x

+

u(x)

u′(x)

u′′(x)

u′′′(x)

uiv(x)

v(x)

v2(x)

v3(x)

v4(x)

v1(x)

+

+

–

–

1This method was described by K. W. Folley in Vol. 54 (1947) of the American Mathematical Monthly and was referred to
in the movie Stand and Deliver.
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Antidifferentiation 227

The method yields

!x4 cos x dx = x4 sin x – (–4x3 cos x) + (–12x2 sin x) – 24x cos x + 24 sin x + C

= x4 sin x + 4x3 cos x – 12x2 sin x – 24x cos x + 24 sin x + C.

With the ordinary method we would have had to apply the Parts Formula four
times to perform this integration.

E. APPLICATIONS OF ANTIDERIVATIVES; 
DIFFERENTIAL EQUATIONS
The following examples show how we use given conditions to determine constants of
integration.

EXAMPLE 48
If f !(x) = 3x2 and f(1) = 6, then

f(x) = !3x2 dx = x3 + C.

Since f(1) = 6, 13 + C must equal 6; so C must equal 6 – 1 or 5, and f(x) = x3 + 5.

EXAMPLE 49
If the slope of a curve at each point (x, y) equals the reciprocal of the abscissa and 

if the curve contains the point (e, –3), we are given that and that y = –3 

when x = e. This equation is also solved by integration. Since , dy = dx. 

Thus, y = ln x + C. We now use the given condition, by substituting the point (e, –3),
to determine C. Since –3 = ln e + C, we have –3 = 1 + C, and C = –4. Then, the
solution of the given equation subject to the given condition is

y = ln x – 4.

DIFFERENTIAL EQUATIONS: MOTION PROBLEMS.

An equation involving a derivative is called a differential equation. In Examples 48 and
49, we solved two simple differential equations. In each one we were given the deriva-
tive of a function and the value of the function at a particular point. The problem of find-
ing the function is called an initial-value problem and the given condition is called the
initial condition.

In Examples 50 and 51, we use the velocity (or the acceleration) of a particle mov-
ing on a line to find the position of the particle. Note especially how the initial conditions
are used to evaluate constants of integration.

1
x

dy
dx x

= 1

dy
dx x

= 1

BC ONLY

Differential
equation
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228 AP Calculus

EXAMPLE 50
The velocity of a particle moving along a line is given by v(t) = 4t 3 – 3t 2 at time t. 
If the particle is initially at x = 3 on the line, find its position when t = 2.

Since
,

x = !(4t3 – 3t2) dt = t4 – t3 + C.

Since x(0) = 04 – 03 + C = 3, we see that C = 3, and that the position function is
x(t) = t4 – t3 + 3. When t = 2, we see that

x(2) = 24 – 23 + 3 = 16 – 8 + 3 = 11.

EXAMPLE 51
Suppose that a(t), the acceleration of a particle at time t, is given by a(t) = 4t – 3,
that v(1) = 6, and that f (2) = 5, where f(t) is the position function. (a) Find v(t)
and f (t). (b) Find the position of the particle when t = 1.

(a)

v = !(4t – 3) dt = 2t2 – 3t + C1.

Using v(1) = 6, we get 6 = 2(1)2 – 3(1) + C1, and C1 = 7, from which it follows
that v(t) = 2t2 – 3t + 7. Since

f (t) = ! .

Using f (2) = 5, we get 5 = (2)3 – (2)2 + 7(2) + C2, 5 = – 6 + 14 + C2, 

so C2 = . Thus,

.

(b) When t = 1,

.

For more examples of motion along a line, see Chapter 8, Further
Applications of Integration, and Chapter 9, Differential Equations.

f ( )1
2
3

3
2

7
25
3

13
6

= − + − = −

f t t t t( ) = − + −2
3

3
2

7
25
3

3 2

− 25
3

16
3

3
2

2
3

( )2 3 7
2
3

3
2

72
3 2

2t t dt
t t

t C− + = − + +

v t f t
df
dt

( ) ( ) ,= ′ =

a t v t
dv
dt

t( ) ( ) ,= ′ = = −4 3

v t
dx
dt

t t( ) = = −4 33 2
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Antidifferentiation 229

Chapter Summary
In this chapter, we have reviewed basic skills for finding indefinite integrals. We’ve
looked at the antiderivative formulas for all of the basic functions and reviewed tech-
niques for finding antiderivatives of other functions. 

We’ve also reviewed the more advanced techniques of integration by partial frac-
tions and integration by parts, both topics only for the BC Calculus course . 

Practice Exercises
Directions: Answer these questions without using your calculator.

1. !(3x2 – 2x + 3) dx =

(A) x3 – x2 + C (B) 3x3 – x2 + 3x + C (C) x3 – x2 + 3x + C

(D) (3x2 – 2x + 3)2 + C (E) none of these

2. ! dx = 

(A) + C (B) x2 – 1 + + C (C)

(D) (E) none of these

3. ! dt =

(A) (4 – 2t)3/2 + C (B) (4 – 2t)3/2 + C (C) (4 – 2t)3 + C

(D) (4 – 2t)2 + C (E) (4 – 2t)3/2 + C

4. !(2 – 3x)5 dx =

(A) (2 – 3x)6 + C (B) (2 – 3x)6 + C (C) (2 – 3x)6 + C

(D) (2 – 3x)6 + C (E) none of these

5. ! dy =

(A) + C (B) (2y – 3y2)2 + C (C) + C

(D) (2y – 3y2)1/2 + C (E) + C2 3 2y y−1
4

1
2

2 3 2ln y y−1
4

4 2 3 2y y−

1 3

2 3 2

−
−

y

y y

− 1
18

1
2

–
1
2

1
6

4
3

+ 1
2

− 1
6

2
3

− 1
3

4 2− t

x
x

x
C

3

3
4− − +

x
x

x
C

3

3
2

1
4

− − +1
4 2x

1
3

1
2

3

x
x

−





x
x

−





1
2

2

1
2
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230 AP Calculus

6. ! =

(A) + C (B) + C (C) + C

(D) + C (E)

7. ! =

(A) (B) (C)

(D) (E) none of these

8. ! dt =

(A) + C (B) + C (C) + C

(D) + C (E) + C

9. !cos 3x dx =

(A) 3 sin 3x + C (B) – sin 3x + C (C) sin 3x + C

(D) sin 3x + C (E) cos2 3x + C

10. ! =

(A) (1 + 4x2) + C (B) + C (C) + C

(D) (E) tan–1 2x + C

11. ! =

(A) tan–1 (2x) + C (B) (1 + 4x2) + C (C) + C

(D) tan–1 (2x) + C (E)
1

8
1 4 2

x
x Cln + +1

2

1
8 1 4 2 2( )+ x

1
8

ln

dx
x1 4 2+

1
2

1
2

1 4 2ln + +x C

1
4

1 4 2+ x
1

8 1 4 2 2( )+ x
1
8

ln

x dx
x1 4 2+

1
2

1
3

− 1
3

1
2

2 12t −−
−

1
4 2 12( )t

8 2 12t −4 2 12ln t −1
2

2 12ln t −

t

t2 12 −

3
1 3 2( )+

+
u

C

2 1 3ln + +u C−
+

+1
3 1 3 2( )u

C
2
3

1 3ln + +u C

2
1 3

du
u+

1
3

2 1ln x C− +2
3 2 1x −

+
−

6
2 1x

1
6 12− x

−
−
3

2 1x

dx
x3 2 1 2( )−
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Antidifferentiation 231

12. ! dx =

(A) (1 + 4x2)2 + C (B) (C)

(D) (E)

13. ! =

(A) (B) (C) sin–1 2x + C

(D) tan–1 2x + C (E)

14. ! =

(A) (B) (C) sin–1 + C

(D) (E)

15. ! =

(A) sin–1 + C (B) + C (C) sin–1 + C

(D) (E)

16. ! dx = 

(A) (B) (C)

(D) (E)

17. ! dx =

(A) (B)

(C) (D)

(E) none of these

− − +( )x
x

C
2

4

4x
x x

x
C

2

2
3 6

4− + + +ln

x
x x

x
C

2

2
6 6

8− + − +ln
( )x

x
C

− +2
4

4

2

( )x
x
− 2 3

2

1
2

2
1

2x
x

C−



 +x x C+ +ln 2

x x C+ +2 ln1
1
2

1+ +−x Cx x C+ +1
2

ln

2 1
2
x

x
+

2 4 2− +y C− − +1
2

4 2ln y C

y
2

− −4 2y
y
2

1
2

y dy

y4 2−

−
−

+1
3 4 2 3 2( )y

C− − +1
2

4 2ln y C

y
2

− − +4 2y C
1
2 2

1sin− +y
C

dy

y4 2−

1
8

1 4 2ln + +x C
1
2

1
2

1 4
4

2+ +x
C

1
8

1 4 2+ +x C

x dx

x1 4 2+

−
+

+1
1 4 2( )x

C−
+

+1
3 1 4 2 3( )x

C

−
+

+1
8 1 4 2( )x

C
1
4

1 4 2+ +x C
1
8

ln

x
x( )1 4 2 2+

7_3679_APCalc_10Chapter5B  10/3/08  4:25 PM  Page 231



232 AP Calculus

18. ! dt =

(A) t – 2 + + C (B) (C)

(D) (E)

19. !(4x1/3 – 5x3/2 – x–1/2) dx =

(A) 3x4/3 – 2x5/2 – 2x1/2 + C
(B) 3x4/3 – 2x5/2 + 2x1/2 + C

(C) 6x2/3 – 2x5/2 – x2 + C

(D) x –2/3 – x1/2 + x –3/2 + C

(E) none of these

20. ! dx =

(A) + C

(B) 1 + + + C

(C) – ln|x| – + C

(D) – ln|x| + + C

(E) – ln|x| + + C

21. ! =

(A) (B) (C)

(D) (E)

22. ! =

(A) (B) (C)

(D) (E) − − +1
9

4 9 2u C
1
6

3
2

1sin− +u C

2 4 9 2− +u C− − +1
18

4 9 2ln u C
1
3

3
2

1sin− +u
C

u du

u4 9 2−

− − +2 1ln y C2 y y C− +ln

2 1ln ( )− +y C
1
2

1ln − +y C4 1 − +y C

dy
y y( )1 −

2
3x

x2

2

1
x

x2

2

1
x

x2

2

2
3x

1
2x

1
4

1
2

1
3

4 2

3

x x x

x

− −

x x
x

3

2
1− −

1
2

15
2

4
3

1
2

t
t

t
C

2

22
1− − +t

t t C
2

2
2− + +ln

t
t C

2

2
+ +ln

t
t

t
C

3

3
2

1− − +1
t

t
t

−





1
2
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23. !sin q cos q dq =

(A) (B) (C)

(D) (E) cos 2q + C

24. ! dx =

(A) –2 cos1/2 x + C (B) – cos + C (C) –2 cos + C

(D) sin3/2 x + C (E)

25. !t cos (2t)2 dt =

(A) sin (4t2) + C (B) cos2 (2t) + C (C) sin (4t2) + C

(D) sin (2t)2 + C (E) none of these

26. !cos2 2x dx =

(A) (B) (C)

(D) (E)

27. !sin 2q dq =

(A) (B) –2 cos 2q + C (C) –sin2 q + C

(D) cos2 q + C (E)

28. !x cos x dx =

(A) x sin x + C (B) x sin x + cos x + C (C) x sin x – cos x + C

(D) cos x – x sin x + C (E) sin x + C

29. ! =

(A) + C (B) tan 3u + C (C) u + + C

(D) tan 3u + C (E) + C
1

3 3cos u
1
3

sec 3
3

u− sec 3
3

u

du
ucos2 3

x2

2

− +1
2

2cos θ C

1
2

2cos θ + C

1
4

4( sin )x x C+ +x x
C

4
4

16
+ +sin

x x
C

4
4

4
+ +sinx x

C
2

4
8

− +sinx x
C

2
4

8
+ +sin

1
4

− 1
8

1
2

1
8

1
2

cos x C+3
2

xx

sin x
x

1
2

2sin θ + C

cos2

2
θ + C− +1

4
2cos θ C− +sin2

2
θ

C
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30. ! =

(A) (1 + sin x)1/2 + C

(B)

(C)

(D)

(E) + C

31. ! =

(A) (B) – csc (q – 1) + C (C) sin–3 (q – 1) + C

(D) – cot (q – 1) + C (E) csc (q – 1) + C

32. !sec dt =

(A) (B) 2 tan2 + C (C) 2 ln cos + C

(D) (E)

33. ! =

(A) (B)

(C) (D)

(E)

34. !sec3/2 x tan x dx =

(A) (B) (C)

(D) (E) none of these

35. !tan q dq =

(A) (B) sec2 q + C (C)

(D) sec q + C (E) − +ln cos θ C

ln sin θ + C− +ln sec θ C

2
3

3 2sec x C+

sec3 2 x C+− +−2
3

3 2cos x C
2
5

5 2sec x C+

2 ln sin x C+

− + +ln cos1 2 x C1 2+ +cos x C

1
2

1 2ln ( cos )+ +x C− + +2 1 2cos x C

sin

cos

2

1 2

x dx

x+

2
2 2

ln sec tan
t t

C+ +ln sec tant t C+ +

t
2

t
2

ln sec tan
t t

C
2 2

+ +

t
2

− 1
3

2 1ln sin θ − + C

cos ( )
sin ( )

θ θ
θ
−

−
1

12

d

2
3 1 3 2( sin )+ x

ln sin1 + +x C

2 1 + +sin x C

ln sin1 + +x C

− 1
2

cos
sin
x dx

x1 +

7_3679_APCalc_10Chapter5B  10/3/08  4:25 PM  Page 234



Antidifferentiation 235

36. ! =

(A) csc 2x cot 2x + C (B) + C (C) cot 2x + C

(D) –cot x + C (E) –csc 2x + C

37. ! dy =

(A) sec–1 y + C (B) (tan–1 y)2 + C (C) ln (1 + y2) + C
(D) ln (tan–1 y) + C (E) none of these

38. !sin 2q cos q dq =

(A) cos3 q + C (B) cos3 q + C (C) sin2 q cos q + C

(D) cos3 q + C (E) none of these

39. ! dt =

(A) (B) (C)

(D) (E)

40. !cot 2u du =

(A) (B) (C)

(D) –sec 2u + C (E)

41. ! dx =

(A) (B) x – ex + C (C)

(D) (E)

42. ! dx =

(A) (B)

(C) (D)

(E) none of these

1
2

2ln ( )x x C− +ln lnx x C− + +2

1
2

2
ln

x
x

C
− +1

2
2ln lnx x C+ − +

x
x x

−
−

1
2( )

ln e Cx − +11
1

1
+

−
+

e
Cx

x
e

Cx−
−

+1
1 2( )

x e Cx+ − +ln 1

e
e

x

x − 1

2 2ln sin u C+

− +1
2

22csc u C
1
2

2ln sin u C+ln sin u C+

2 1 2ln cos− +t C1 2− +cos t C

ln cos1 2− +t C− − +ln cos1 2t C
2

1 2 2( cos )−
+

t
C

sin
cos

2
1 2

t
t−

2
3

–
2
3

tan−

+

1

21
y

y

− 1
2

− 2
2sin x

1
2

dx
xsin2 2
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43. !
(A) (B) (C)

(D) (E)

44. !cos q esin q dq =

(A) esin q+1 + C (B) esin q + C (C) –esin q + C

(D) ecos q + C (E) esin q (cos q – sin q) + C

45. !e2q sin e2q dq =

(A) cos e2q + C (B) 2e4q (cos e2q + sin e2q) + C (C)

(D) –2 cos e2q + C (E) none of these

46. ! dx =

(A) (B) (C)

(D) (E) none of these

47. !xe–x dx =

(A) e–x (1 – x) + C (B) (C) –e–x (x + 1) + C

(D) (E) e–x (x + 1) + C

48. !x2ex dx =

(A) ex(x2 + 2x) + C (B) ex(x2 – 2x – 2) + C (C) ex(x2 – 2x + 2) + C

(D) ex(x – 1)2 + C (E) ex(x + 1)2 + C

49. ! dx =

(A) (B)

(C) (ex – e–x)–2 + C (D)

(E) ln (ex + e–x) + C

ln e e Cx x− +−− 1
2

x e e Cx x+ − +−2 lnx e e Cx x− − +−ln

e e
e e

x x

x x

+
−

−

−

− +−x
e Cx

2

2

e
x

C
x1

1

−

−
+

1
2

e Cx +

e
x x x

C
x

2
1 1+



 +2e Cx +2 1x e Cx( )− +

e
x

x

− +1
2

2cos e Cθ

1
2

2 1e Cx + +e Cx2

+

2
2

e Cx +e x Cx2

2 12( )+ +1
2

2

e Cx +

xe dxx2

=
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Antidifferentiation 237

50. ! dx =

(A) tan–1 ex + C (B) ln (1 + e2x) + C (C) ln (1 + e2x) + C

(D) tan–1 ex + C (E) 2 tan–1 ex + C

51. ! =

(A) (B) (C) (ln v)2 + C

(D) 2 ln v + C (E) ln v2 + C

52. ! dx =

(A) (B) ln2 x + C (C)

(D) (E)

53. !
(A) (B) (C)

(D) (E) none of these

54. !
(A) (B) (C)

(D) (E)

55. !ln x3 dx =

(A) (B) 3x (ln x – 1) + C (C) 3 ln x (x – 1) + C

(D) (E) none of these
3

2

2x x
C

ln +

3
2

2ln x C+

η η ηln + + Cln ( )η η − +1 C

1
2

2ln η + Cη η(ln )− +1 C
1
2

2ln η + C

ln η ηd =

3
1
2

2x x Cln −



 +

x
x C

4

4
1(ln )− +x

x C
4

16
4 1( ln )− +x x C2 3 1( ln )+ +

x x dx3 ln =

1
4

2ln x C+(ln )x
C

2

2
+

1
2

ln ln x C+
ln2 x

x
C+

ln x
x

1
2

1
2

ln
v

C
2

2
+ln ln v C+

ln v dv
v

1
2

1
2

e
e

x

x1 2+
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238 AP Calculus

56. ! dy =

(A) (B) (C)

(D) (E)

57. ! =

(A) (B) (C)

(D) (E)

58. ! dy =

(A) (B) (C)

(D) (E)

59. ! =

(A) ln(x2 + 2x + 2) + C (B) ln |x + 1| + C (C) arctan(x + 1) + C

(D) (E)

60. !
(A) 2(x3/2 – x) + C (B) – x + C (C)

(D) (E) x – 2 + C

61. !eq cos q dq =

(A) eq(cos q – sin q) + C
(B) eq sin q + C

(C)

(D) 2 eq(sin q + cos q) + C

(E)
1
2

e Cθ θ θ(sin cos )− +

1
2

e Cθ θ θ(sin cos )+ +

x1
2

2
3

2 3 2x x C− +

1
2

1 2( )x C− +x2

2

x x dx( )− =1

− + + +1 1
2 2x

x x Cln1
21

3
3 2x x x

C
+ +

+

dx
x x2 2 2+ +

ln
e

y
C

y

+
+

1
1 2 1− + +ln y C

ln
( )

y
y

C
+

+
1 21

2
1

−
+

+
y

Cy y C− + +2 1ln

y
y

−
+

1
1

ln ln v C+ln
1
v

C+

− +ln ln v C− +1
2ln v

C
1

2ln v
C+

dv
v vln

ln y
y y

C− +1− + +1
1

y
y C(ln )

− + +1
3

4 13y
y C( ln )

1
2

2

y
y Cln +1

1
y

y C( ln )− +

ln y
y2

BC ONLY

BC ONLY

7_3679_APCalc_10Chapter5B  10/3/08  4:25 PM  Page 238



Antidifferentiation 239

62. ! dt =

(A) (B) ln t – 2 ln2 t + ln3 t + C (C) –2(l – ln t) + C

(D) (E)

63. !u sec2 u du =

(A) (B) (C)

(D) (E)

64. ! dx =

(A) ln (x2 + 4) + C (B) (C)

(D) (E) none of these

65. ! dx =

(A) + C (B) sin–1 x + C

(C) ln + C (D) sin–1 x + + C

(E) sin–1 x + ln + C

66. ! dx =

(A) (B) sin–1 (1 – 2x) + C

(C) (D)

(E)

67. ! dx =

(A) tan–1 ex + C (B) ex – ln (1 + ex) + C (C)

(D) (E) none of thesee
e

Cx
x+

+
+1

1 2( )

e x e Cx x− + + +ln 1

e
e

x

x

2

1 +

− − +1
2

4 4 2x x C

− − +1
4

4 4 2ln ( )x x C
1
2

4 4 2x x C− +

4 4 4 2ln x x C− +

2 1

4 4 2

x

x x

−
−

1 2− x1
2

1 2− x1 2− x1
2

1 2− x

1
1 2

−
−

x
x

ln ( ) tanx
x

C2 14
1
2 2

+ + +−

1
2 2

1tan− +x
Cln ( ) tanx

x
C2 14

2
+ + +−

2 1
4 2

x
x

+
+

u u u u Csec ln sec tan− + +u u u Ctan ln sin− +

1
2

sec tanu u C+u
u C

2

2
tan +u u u Ctan ln cos+ +

− − +( ln )l t
C

3

3
ln ln

ln
t t

t
C− + +2

3

3

1
3

3( ln )l − +t C

( ln )l − t
t

2
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240 AP Calculus

68. ! dq =

(A) sec q tan q + C (B) sin q – csc q + C (C) ln (1 + sin2 q) + C

(D) tan–1 (sin q) + C (E)

69. !arc tan x dx =

(A) arc tan x + C
(B) x arc tan x – ln (1 + x2) + C
(C) x arc tan x + ln (1 + x2) + C

(D) x arc tan x + ln (1 + x2) + C

(E) x arc tan x – ln (l + x2) + C

70. ! =

(A) (B) (C)

(D) (E) none of these

71. ! dy =

(A)

(B)

(C)

(D)

(E) none of these

72. !e2 ln u du =

(A) (B) (C)

(D) (E)

73. ! =

(A) (B)

(C) (D) (E) none of thesetan (ln )− +1 y Cln ln lny y C+ +1
2

−
+

+1
1 2 2( ln )y

C
1
2

1 2ln ln+ +y C

dy
y y( ln )1 2+

e Cu1 2+ +ln2 2

u
e Culn +

1
3

3u C+e Cu3 3 +1
3

3

e Cu +

2
2
3

1
10

1 2 3 2 5 2y y y C− + +

ln y y y C− + +2 2

2
2
3

8
5

3 2 5 2y y y C− + +

1
6

2 3( )− +y y C

( )2
4

2− y
y

e e Cx x− + +ln l

1
1 2( )−

+
e

Cxx e Cx− − +ln l− − +ln 1 e Cx

dx
ex1 −

1
2

1
2

−
+

+1
1 2 2( sin )θ

C

cos
sin

θ
θ1 2+
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Antidifferentiation 241

74. !(tan q – 1)2 dq =

(A) (B)

(C) tan q – 2 sec2 q + C (D) sec q + q – tan2 q + C
(E)

75. ! =

(A) sec q – tan q + C (B) ln (1 + sin q) + C
(C) (D)
(E) none of these

76. A particle starting at rest at t = 0 moves along a line so that its acceleration at time t
is 12t ft/sec2. How much distance does the particle cover during the first 3 sec?

(A) 16 ft (B) 32 ft (C) 48 ft (D) 54 ft (E) 108 ft

77. The equation of the curve whose slope at point (x, y) is x2 – 2 and which contains
the point (1, –3) is

(A) (B) y = 2x – 1 (C)

(D) (E) 3y = x3 – 10

78. A particle moves along a line with acceleration 2 + 6t at time t. When t = 0, its
velocity equals 3 and it is at position s = 2. When t = 1, it is at position s =

(A) 2 (B) 5 (C) 6 (D) 7 (E) 8

79. Find the acceleration (in ft/sec2) needed to bring a particle moving with a velocity
of 75 ft/sec to a stop in 5 sec.

(A) –3 (B) –6 (C) –15 (D) –25 (E) –30

80. ! dx =

(A) (B) (C) x + tan–1 x + C

(D) (E) 1
1
2

1
1

+ + +ln
–

x
x

Cx
x
x

C+ +
−

+1
2

1
1

ln

ln x C2 1− +x
x
x

C+ −
+

+1
2

1
1

ln

x
x

2

2 1−

y x x= − −1
3

2
4
3

3

y x= −1
3

10
3

3y x x= −1
3

23

θ θ θ+ +ln csc – cot Cln sec tanθ θ+ + C

dθ
θ1 + sin

tan ln cosθ θ− +2 C

tan ln cosθ θ+ +2 Csec ln cosθ θ θ+ + +2 C
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242 AP Calculus

Answer Key
1. C 17. E 33. A 49. D 65. D
2. E 18. D 34. D 50. A 66. E
3. A 19. A 35. E 51. C 67. B
4. D 20. D 36. C 52. E 68. D
5. E 21. E 37. E 53. B 69. E
6. B 22. E 38. A 54. B 70. B
7. A 23. B 39. C 55. B 71. D
8. E 24. C 40. B 56. D 72. C
9. D 25. A 41. E 57. E 73. A

10. A 26. A 42. D 58. A 74. B
11. D 27. E 43. A 59. C 75. E
12. C 28. B 44. B 60. D 76. D
13. B 29. D 45. C 61. C 77. D
14. C 30. C 46. B 62. E 78. D
15. B 31. B 47. C 63. A 79. C
16. A 32. E 48. C 64. D 80. A

Answers Explained
All the references in parentheses below are to the basic integration formulas on pages
215 and 216. In general, if u is a function of x, then du = u!(x) dx.

1. (C) Use, first, formula (2), then (3), replacing u by x.

2. (E) Hint: Expand. !(x2 – 1 + ) dx = .

3. (A) By formula (3), with u = 4 – 2t and n = ,

! ! .

4. (D) Rewrite: – !(2 – 3x)5(–3 dx)

5. (E) Rewrite:

! ! .

Use (3).

6. (B) Rewrite:

! !
Using (3) yields + C.−

−
1

6 2 1( )x

( ) .•2 1 22x dx− −( ) •2 1
1
3

1
2

2x dx− =−1
3

( ) ( )2 3 2 62 1 2y y y dy− −−( ) ( )2 3 1 3
1
2

2 1 2y y y dy− − =−

1
3

4 2 2
1
2

4 2
3 2

3 2

− − = − − +⋅t dt
t

C( )
( )

4 2
1
2

− = −t dx

1
2

x
x

x C
3

3
1

4
− − +1

4 2x
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Antidifferentiation 243

7. (A) This is equivalent to · 2! . Use (4).

8. (E) Rewrite as !(2t2 – 1)–1/2 • 4t dt. Use (3).

9. (D) Use (5) with u = 3x; du = 3 dx: !cos (3x)(3 dx)

10. (A) Use (4). If u = 1 + 4x2, du = 8x dx: !
11. (D) Use (18). Let u = 2x; then du = 2 dx: !
12. (C) Rewrite as !(1 + 4x3)–2 • (8x dx). Use (3) with n = –2.

13. (B) Rewrite as !(1 + 4x2)–1/2 • (8x dx). Use (3) with n = .

Note carefully the differences in the integrands in Questions 10–13.

14. (C) Use (17); rewrite as ! .

15. (B) Rewrite as !(4 – y2)–1/2 • (–2y dy). Use (3).

Compare the integrands in Questions 14 and 15, noting the difference.

16. (A) Divide to obtain ! dx. Use (2), (3), and (4). Remember that 

!k dx = kx + C whenever k | 0.

17. (E) ! ! – 6x + 12 ln "x" + + C. We

used the Binomial Theorem on page 667 with n = 3 to expand (x – 2)3.

18. (D) The integral is equivalent to ! dt. Integrate term by term.

19. (A) Integrate term by term.

20. (D) Division yields

! dx = !x dx – ! dx –! dx.

21. (E) Use formula (4) with u = 1 – = 1 – y1/2. Then du = dy. Note

that the integral can be written as –2! dy.

22. (E) Rewrite as !(4 – 9u2)–1/2(–18u du) and use formula (3).− 1
18
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1

1
2( )− −






y y

− 1
2 y

y
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x
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t
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8
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x x
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x
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244 AP Calculus

23. (B) The integral is equal to !sin 2q dq. Use formula (6) with u = 2q; du = 2 dq.

24. (C) Use formula (6) with u = ; du = dx; 2!sin ( )

25. (A) Use formula (5) with u = 4t 2; du = 8t dt; !cos (4t 2)(8t dt)

26. (A) Using the Half-Angle Formula (23) on page 669 with a = 2x yields 

! dx.

27. (E) Use formula (6): !sin 2θ (2 dθ). (See #23)

28. (B) Integrate by parts (page 224). Let u = x and dv = cos x dx. Then du = dx and 
v = sin x. The given integral equals x sin x – !sin x dx.

29. (D) Replace by sec2 3u; then use formula (9): !sec2 3u (3 du)

30. (C) Rewrite using u = 1 + sin x and du = cos x dx as !(1 + sin x)–1/2(cos x dx). 

Use formula (3).

31. (B) The integral is equivalent to !csc(q – 1) cot(q – 1) dq. Use formula (12).

32. (E) Use formula (13) with u = ; du = dt: 2!sec ( dt)

33. (A) Replace sin 2x by 2 sin x cos x; then the integral is equivalent to

–! !u–1/2 du

where u = 1 + cos2 x and du = –2 sin x cos x dx. Use formula (3).

34. (D) Rewriting in terms of sines and cosines yields

! ! .

35. (E) Use formula (7).

36. (C) Replace by csc2 2x and use formula (10): !csc2 2x (2 dx)

37. (E) Let u = tan–1 y; then integrate !u du. The correct answer is 

(tan–1 y)2 + C.

38. (A) Replacing sin 2q by 2 sin q cos q yields

!2 sin q cos2 q dq = –2!(cos q)2(–sin q dq) = – 2
3 cos3 q + C.

1
2

1
2

1
22sin x

cos ( sin ) cos− −− = − −( ) +5 2 3 22
3

x x dx x Csin
cos

x
x

dx5 2 = −

−
+

=2

1 2

sin cos

cos
–

x x

x
dx

1
2

t
2

1
2

t
2

1
3

1
32cos u

1
2

1
2

1
2

4+



cos x

1
8

1

2 x
dx





x
1

2 x
x

1
2
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Antidifferentiation 245

39. (C) ! = .

40. (B) Rewrite as !cot 2u (2du) and use formula (8).

41. (E) Use formula (4) with u = ex – 1; du = ex dx.

42. (D) Use partial fractions; find A and B such that

.

Then x – 1 = A(x – 2) + Bx.

Set x = 0: –1 = –2A and A = .

Set x = 2: 1 = 2B and B = .

So the given integral equals

!

43. (A) Use formula (15) with u = x2; du = 2x dx; !ex2(2x dx).

44. (B) Use formula (15) with u = sin q; du = cos q dq.

45. (C) Use formula (6) with u = e2q; du = 2e2q dq; !sin e2q (2e2q dq).

46. (B) Use formula (15) with u = = x1/2; du = dx.

47. (C) Use the Parts Formula. Let u = x, dv = e–xdx; du = dx, v = –e–x. Then,

–xe–x + !e–x dx = –xe–x – e–x + C.

48. (C) See Example 44, page 225.

49. (D) The integral is of the form ! ; use (4).

50. (A) The integral has the form ! . Use formula (18), with u = ex, du = 
ex dx.

51. (C) Let u = ln v; then du = . Use formula (3) for !ln v( dv).

52. (E) Hint: ln = ln x; the integral is !(ln x)( dx)

53. (B) Use parts, letting u = ln x and dv = x3 dx. Then du = dx and v = . The 

integral equals ln x – !x3 dx.

54. (B) Use parts, letting u = ln h and dv = dx. Then du = dh and v = h. The  

integral equals h ln h – !dh.
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−

= +
−
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55. (B) Rewrite ln x3 as 3 ln x, and use the method of Answer 54.

56. (D) Use parts, letting u = ln y and dv = y–2 dy. Then du = dy and v = . The 

Parts Formula yields + ! dy.

57. (E) The integral has the form ! , where u = ln v: !
58. (A) By long division, the integrand is equivalent to 1 – .

59. (C) ! = ! ; use formula (18) with u = x + 1.

60. (D) Multiply to get !(x – )dx.

61. (C) See Example 45, page 225. Replace x by q.

62. (E) The integral equals – !(1 – ln t)2 ; it is equivalent to – !u2 du, where

u = 1 – ln t.

63. (A) Replace u by x in the given integral to avoid confusion in applying the 
Parts Formula. To integrate !x sec2 x dx, let the variable u in the Parts
Formula be x, and let dv be sec2 x dx. Then du = dx and v = tan x, so

!x sec2 x dx = x tan x – !tan x dx

= x tan x + ln + C.

64. (D) The integral is equivalent to ! dx + ! dx. Use formula (4) on

the first integral and (18) on the second.

65. (D) The integral is equivalent to ! dx – ! dx.

Use formula (17) on the first integral. Rewrite the second integral as

– ! (–2x) dx, and use (3).

66. (E) Rewrite: !(4x – 4x2) (4 – 8x) dx.

67. (B) Hint: Divide, getting ! dx.

68. (D) Letting u = sin q yields the integral ! . Use formula (18).

69. (E) Use integration by parts, letting u = arctan x and dv = dx. Then

The Parts Formula yields 

x arctan x – ! or x arctan x – ln (l + x2) + C.
1
2

x dx
x1 2+

du
dx

x
v x=

+
=

1 2 and   .

du
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e
e

e
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−
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cos x
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dt
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Antidifferentiation 247

70. (B) Hint: Note that

Or multiply the integrand by , recognizing that the correct answer is 

equivalent to –ln .

71. (D) Hint: Expand the numerator and divide. Then integrate term by term.

72. (C) Hint: Observe that e2 ln u = u2.

73. (A) Let u = 1 + ln y2 = 1 + 2 ln "y"; integrate ! .

74. (B) Hint: Expand and note that

!(tan2 q – 2 tan q + 1) dq = !sec2 q dq – 2 !tan q dq.

Use formulas (9) and (7).

75. (E) Multiply by . The correct answer is tan q – sec q + C.

76. (D) Note the initial conditions: when t = 0, v = 0 and s = 0. Integrate twice: 
v = 6t2 and s = 2t3. Let t = 3.

77. (D) Since y! = x2 – 2, y = x3 – 2x + C. Replacing x by 1 and y by –3 yields 

C = .

78. (D) When t = 0, v = 3 and s = 2, so

v = 2t + 3t2 + 3 and s = t2 + t3 + 3t + 2.

Let t = 1.

79. (C) Let = a; then

v = at + C. (*)

Since v = 75 when t = 0, therefore C = 75. Then (*) becomes

v = at + 75
so

0 = at + 75 and a = –15.

80. (A) Divide to obtain ! dx. Use partial fractions to get

1
1

1
2 1

1
2 12x x x−

=
−

−
+( ) ( )

.

1
1

12
+

−
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dv
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− 4
3
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1
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−
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1 2

y
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y+ ln
1
2

e x− − 1

e
e

x
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−

−

1
1

1
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1
1−

= − +
−

= +
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e e
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x x
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A. FUNDAMENTAL THEOREM OF CALCULUS (FTC);
DEFINITION OF DEFINITE INTEGRAL
If f is continuous on the closed interval [a,b] and F! = f, then, according to the
Fundamental Theorem of Calculus,

f(x) dx = F(b) – F(a).

Here f(x) is the definite integral of f from a to b; f(x) is called the integrand; and a and

b are called respectively the lower and upper limits of integration.
This important theorem says that if f is the derivative of F then the definite integral

of f gives the net change in F as x varies from a to b. It also says that we can evaluate any
definite integral for which we can find an antiderivative of f.

B. PROPERTIES OF DEFINITE INTEGRALS
The following theorems about definite integrals are important. 

 !a

b

 !a

b

Definite Integrals CHAPTER6
Concepts and Skills
In this chapter, we will review what definite integrals mean and how to evaluate them.
We’ll look at

• the all-important Fundamental Theorem of Calculus;
• other important properties of definite integrals, including the Mean Value Theorem

for Integrals;
• analytic methods for evaluating definite integrals;
• evaluating definite integrals using tables and graphs;
• Riemann sums;
• numerical methods for approximating definite integrals, including left and right 

rectangular sums, the midpoint rule, and the trapezoid rule;
• and the average value of a function.

For BC students, we’ll also review how to work with integrals based on parametrically
defined functions.

Fundamental
Theorem of
Calculus

Definite 
integral
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250 AP Calculus

f(t) dt = f(x) (1)

kf (x) dx = k f(x) dx (k a constant) (2)

f(x) dx = 0 (3)

f(x) dx = – f(x) dx (4)

f(x) dx + f(x) dx = f(x) dx (a < c < b) (5)

If f and g are both integrable functions of x on [a,b], then

[f(x) ± g(x)] dx = f(x) dx ± g(x) dx (6)

THE MEAN VALUE THEOREM FOR INTEGRALS: If f is continuous on [a,b] there exists
at least one number c, a < c < b, such that

f(x) dx = f(c)(b – a) (7)

By the comparison property, if f and g are integrable on [a,b] and if f(x) " g(x) for
all x in [a,b], then

f(x) dx " g(x) dx (8)

The evaluation of a definite integral is illustrated in the following examples. A
calculator will be helpful for some numerical calculations.

EXAMPLE 1

(3x2 – 2x) dx = x3 – x2 = (8 – 4) – (–1 –1) = 6.

EXAMPLE 2

dx = dx = = 

[(2 + ln 2 + 1) – (1 + 2)] = ln 2, or ln .

EXAMPLE 3

= – (9 – y)–1/2 (–dy) = –2 = –2(1 – 2) = 2.
5

8

9 − y
 !5

8dy
y9 − !5

8

2
1
2

1
2

1

2

x x
x

+ +



ln 21

2
1 1 2

2
+ −



x x !1

21
2

x x
x

2

2

2
2

+ −

 !1

2

−1

2

 !−1

2

 !a

b

 !a

b

 !a

b

 !a

b

 !a

b

 !a

b

 !a

b

 !c

b

 !a

c

!
b

a

 !a

b

 !a

a

 !a

b

 !a

b

 !a

x
d
dx

Mean Value
Theorem for
Integrals
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EXAMPLE 4

= – (2 – x2)–3(–2x dx) = – = = .

EXAMPLE 5

= tan–1 = (tan–1 1 – tan–1 0) 

= = .

EXAMPLE 6

(3x – 2)3 dx = (3x – 2)3(3 dx) 

= = (1 – 16) = .

EXAMPLE 7

= – = – = .

EXAMPLE 8

cos 2x dx = sin 2x = (1 + 1) = 1.

EXAMPLE 9

xex dx = (xex – ex) = e – e – = (by Parts).

EXAMPLE 10

= sin–1 x = 

EXAMPLE 11

ln (x + 1) dx = "(x + 1) ln (x + 1) – x# (where the Parts Formula has been

used) = e ln e – (e – 1) – 0 = 1.
0

1e−

 !0

1e−

π
6

.
0

1 2dx

x1 2− !0

1 2

2
e

– 1 1
e e

−



−1

1

 !−1

1

1
2−π

π

4

41
2 

!
−π

π

4

4

e
e

− 1
2

1 1
e

−





1
20

1

e x− 21
2

xe dxx− 2

 !0

1

− 5
4

1
120

1( )3 2
12

4x −
 !0

11
3 !0

1

π
12

π



4

0–1
3

1
30

3t
3

1
3

dt
t9 2+ !0

3

3
16

1
4

1
4

1 −





0

1( )2
2

2 2−
−

−x1
2 !0

11
2

x dx
x( )2 2 3− !0

1

BC ONLY

BC ONLY
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EXAMPLE 12

To evaluate we use the method of partial fractions 

and set

.

Solving for A and B yields A = , B = . Thus,

EXAMPLE 13

tan sec2 dq = tan2 = 1 – .

EXAMPLE 14

sin2 x dx = dx = = .

EXAMPLE 15

by theorem (1), page 250.

EXAMPLE 16

by theorem (4), page 250,

= – by theorem (1).

EXAMPLE 17

If F(x) = , then

(where u = x2)

· by the Chain Rule

.=
+





 =

+
1

3
2

2
3 2u

x
x
x

( )

du
dx




dt
t3 + !1

u


= d
du

dt
t3 + !1

u

= d
dx

dt
t3 + !1

2x

′ =F x
d
dx

( )

dt
t3 + !1

2x

e dt et x− −= −
2 2

 !1

xd
dx

 
−











−!
1

2
x

te dtd
dx

e dtt− =
2

 !x

1d
dx

1 12 2+ = +sin sint dt x
 !−1

xd
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π −
4

1
20

2πx x
2 2

− sin1
2 2

−





cos x

 !0

2π
1
2 !0

2π

1
3

2
3

=
π

π

3

2θ
2

2
2

θ
2

θ
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!
π

π

3

2

dy
y

y
y2

1

1

4
1
4

2
2

1
4

1
3

3
1
2

3
−

= −
+

= −



 =

−
ln ln ln – ln .

 !−1

1

1
4

− 1
4

1
4 2 22y

A
y

B
y−

=
+

+
−

dy
y2 4− !−1

1

BC ONLY
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EXAMPLE 18

If F(x) = dt, then to find F!(x) we let u = cos x. Thus

EXAMPLE 19

. Here we have let f(t) = 

and noted that

(*)

where
.

The limit on the right in the starred equation is, by definition, the derivative of
F(x), that is, f(x).

EXAMPLE 20

Reexpress , in terms of u if u = .

When u = , u2 = x – 2, and 2u du = dx. The limits of the given inte-
gral are values of x. When we write the new integral in terms of the variable u,
then the limits, if written, must be the values of u that correspond to the given
limits. Thus, when x = 3, u = 1, and when x = 6, u = 2. Then

.

EXAMPLE 21
If g! is continuous, then

g!(x) dx = g!(c)

because

g!(x) dx = ,

where the limit on the right is, by definition, the derivative of g(x) at c, namely, g!(c).

lim
( ) ( )

h

g c h g c
h→

+ −
0 !c

c h+

lim
h h→0

1

!
c

c h+

lim
h h→0

1

( )u u du4 22+!
1

2

( )u u du2 22 2+ =
 !1

2

x x dx− =2 2
 !3

6

x − 2

x − 2x x dx− 2
 !3

6

dF x
dx

f x ex( )
( )= = − 1

f t dt
F x h F x

hh
( ) lim

( ) ( )= + −
→0 !x

x h+

lim
h h→0

1

et − 1e dt et x− = −1 1
 !x

x h+
1
h

lim
h→0

dF
dx

dF
du

du
dx

u x x x= = − − = − −• ( sin ) sin cos .1 13 3

1 3− t
 !0

cos x
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C. INTEGRALS INVOLVING PARAMETRICALLY
DEFINED FUNCTIONS
The techniques are illustrated in Examples 22 and 23.

EXAMPLE 22

To evaluate y dx, where x = 2 sin q and y = 2 cos q, we note that dx = 2 cos q dq

and that

when x = –2,

when x = 2.

Then

y dx = 2 cos q (2cos q) dq = 4

= 

When using parametric equations we must be sure to express everything in terms of
the parameter. In Example 22 we replaced in terms of q: (1) the integrand, (2) dx, and (3)
both limits. Remember that we have defined dx as x!(q) dq.

EXAMPLE 23

Express 2π xy dx in terms of t if .

We see that dx = dt.

We now find limits of integration in terms of t:

For x = 0, we solve ln t = 0 to get t = 1.
For x = 1, we solve ln t = 1 to get t = e.

Then 2π xydx = 2π (ln t)(t3)( dt) = 2π (t2 ln t)dt.
 !1

e1
t !1

e

 !0

1

1
t

x t
y t

=
=

ln
3

 !0

1

−π

π
= π

2

2

2 .2
2

2
θ θ+





sin

1 2
2

+ cos θ θd
 
!

−π

π

2

2

 
!

−π

π

2

2

 !−2

2

= π
2

θ

θ = − π
2

 !−2

2

BC ONLY
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D. DEFINITION OF DEFINITE INTEGRAL AS THE LIMIT 
OF A SUM: THE FUNDAMENTAL THEOREM AGAIN
Most applications of integration are based on the FTC. This theorem provides the tool for
evaluating an infinite sum by means of a definite integral. Suppose that a function f(x) is
continuous on the closed interval [a,b]. Divide the interval into n equal* subinter-

vals, of length )x = . Choose numbers, one in each subinterval, as follows: x1 in the

first, x2 in the second, . . . , xk in the kth, . . . , xn in the nth. Then

Any sum of the form )x is called a Riemann sum.

AREA

If f(x) is nonnegative on [a,b], we see (Figure N6–1) that f(xk) )x can be regarded as the
area of a typical approximating rectangle. As the number of rectangles increases, or,
equivalently, as the width )x of the rectangles approaches zero, the rectangles become an
increasingly better fit to the curve. The sum of their areas gets closer and closer to the
exact area under the curve. Finally, the area bounded by the x-axis, the curve, and the
vertical lines x = a and x = b is given exactly by

and hence by f(x) dx.

FIGURE N6–1

x

y

y = f(x)

f(xk)

0

(xk,yk)

a x b#

 !a

b

lim ( )
n

k
k

n

f x x
→∞

=
∑ ∆

1

f xk
k

n

( )
=

∑
1

f x dx F b F a
dF x

dx
f x( ) ( ) ( ),

( )
( ).= − =where 

 !a

b

lim ( )
n

k
k

n

f x x
→∞

=

=∑ ∆
1

b a
n
−

*It is not in fact necessary that the subintervals be of equal length, but the formulation is simpler if one assumes they are.

Riemann Sum
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256 AP Calculus

What if f(x) is negative? Then any 
area above the graph and below the x-axis 
is counted as negative (Figure N6–2).

The shaded area above the curve and 
below the x-axis equals

– f(x) dx,

MMMMMMMwhere the integral yields a negative number. 
Note that every product f(xk) )x in the shaded 
region is negative, since f(xk) is negative for 
all x between a and b.

We see from Figure N6–3 that the 
graph of f crosses the x-axis at c, that area 
A1 lies above the x-axis, and that area A2

lies below the x-axis. Since, by property 
(5) on page 250,

f(x) dx = f(x) dx + f(x) dx,

MMMMMMM
therefore

f(x) dx = A1 – A2.

Note that if f is continuous then the area between the graph of f on [a,b] and the x-
axis is given by

.

This implies that, over any interval within [a,b] for which f(x) < 0 (for which its graph
dips below the x-axis), $f(x)$ = –f(x). The area between the graph of f and the x-axis in
Figure N6–3 equals

= f(x) dx – f(x) dx.

This topic is discussed further in Chapter 7.

 !c

b

 !a

c

f x dx( )
 !a

b

f x dx( )
 !a

b

 !a

b

 !c

b

 !a

c

 !a

b

 !a

b

x

y

a b

y = f (x)

FIGURE N6–2

a c b

y = f (x)

x

y

A1

A2

FIGURE N6–3
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E. APPROXIMATIONS OF THE DEFINITE 
INTEGRAL; RIEMANN SUMS
It is always possible to approximate the value of a definite integral, even when an inte-
grand cannot be expressed in terms of elementary functions. If f is nonnegative on 

[a,b], we interpret f(x) dx as the area bounded above by y = f(x), below by the x-axis, and

vertically by the lines x = a and x = b. The value of the definite integral is then approxi-
mated by dividing the area into n strips, approximating the area of each strip by a rectangle
or other geometric figure, then summing these approximations. We often divide the inter-
val from a to b into n strips of equal width, but any strips will work.

E1. USING RECTANGLES

We may approximate f (x) dx by any of the following sums, where ∆x represents the
subinterval widths:

(1) Left sum: f(x0) )x + f (x1) )x + . . . + f (xn–1) )x, using the value of f at the left
endpoint of each subinterval.

(2) Right sum: f (x1) )x + f (x2) )x + . . . + f (xn) )x, using the value of f at the right
end of each subinterval.

(3) Midpoint sum: f )x + f )x + . . . + f )x, using the

value of f at the midpoint of each subinterval.
These approximations are illustrated in Figures N6–4 and N6–5, which accompany

Example 24.

EXAMPLE 24

Approximate x3 dx by using four subintervals of equal width and calculating (a)

the left sum, (b) the right sum, and (c) the midpoint sum. Evaluate the integral
exactly.

Here )x = .

(a) For a left sum we use the left-hand altitudes at x = 0, , 1, and . The

approximating sum is

.

The dashed lines in Figure N6–4 show the inscribed rectangles used.

(b) For the right sum we use right-hand altitudes at x = , 1, , and 2. The

approximating sum is

.

This sum uses the circumscribed rectangles shown in Figure N6–4.

1
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 !0
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 !a
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Midpoint sum
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258 AP Calculus

FIGURE N6–4 FIGURE N6–5

(c) The midpoint sum uses the heights at the midpoints of the subintervals, as
shown in Figure N6–5. The approximating sum is

.

Since the exact value of x3 dx is or 4, the midpoint sum is the best

of the three approximations. This is usually the case.
We will denote the three Riemann sums, with n subintervals, by L(n), R(n),

and M(n). (These sums are also sometimes called “rules.”)

E2. Using Trapezoids.
We now find the areas of the strips in Figure N6–6 by using trapezoids. We denote the
bases of the trapezoids by y0, y1, y2, . . ., yn and the heights by ∆x = h1, h2, . . . , hn.

FIGURE N6–6

y = f(x)

y0

y

x
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x1 x3x2

h2h1

y2 y3
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hn 
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0

2x4

4 !0
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7_4324_APCalc_11Chapter6A  10/4/09  2:15 PM  Page 258



Definite Integrals 259

The following sum approximates the area between f and the x-axis from a to b:

.

If all subintervals are of equal width, h, we can remove the common factor .

Using T(n) to denote the approximating sum with n equal subintervals, we have the
Trapezoid Rule:

.

EXAMPLE 25

Use T(4) to approximate x3 dx.

From Example 24, h = . Then,

.

This is better than either L(4) or R(4), but M(4) is the best approximation here.

EXAMPLE 26
A function f passes through the five points shown. Estimate the area 

A = f (x)dx using (a) a left rectangular approximation and (b) a trapezoidal 

approximation.
NOTE: The subinterval widths are not equal.

f

x

14

12
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2

2 3 6 8 12
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(3,11)

(2,7)
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2

12

∫
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2

0 2 1
2

2 1 2 3
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2 173
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 !0
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2 2 20 1 2 1!

h
2

 

y y
h

y y
h

y y
h

y y
hn n

n
0 1

1
1 2

2
2 3

3
1

2 2 2 2
+

⋅ + + ⋅ +
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⋅ + +
+
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Rule

7_4324_APCalc_11Chapter6A  10/4/09  3:11 PM  Page 259



260 AP Calculus

(a) In each subinterval, we sketch the
rectangle with height determined by
the point on f at the left endpoint. Our
estimate is the sum of the areas of
these rectangles:

A ≈ 1(7) + 3(11) + 2(13) + 4(12) ≈ 114

(b) In each subinterval, we sketch
trapezoids by drawing segments 
connecting the points on f. Our esti-
mate is the sum of the areas of these 
trapezoids:

A ≈ · 1 + · 3 + 

· 2 + · 4 ≈ 112

Comparing Approximating Sums
If f is an increasing function on [a,b], then L(n) ! f (x) dx ! R(n), while if f is

decreasing, then R(n) ! f (x) dx ! L(n).

From Figure N6–7 we infer that the area of a trapezoid is less than the true area if the
graph of f is concave down, but is more than the true area if the graph of f is concave up.

FIGURE N6–7

or while or

concave upconcave down

 !a

b
 !a

b
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7_4324_APCalc_11Chapter6A  10/30/09  11:00 AM  Page 260



Definite Integrals 261

Figure N6–8 is helpful in showing how the area of a midpoint rectangle compares
with that of a trapezoid and with the true area. Our graph here is concave down. If M is the
midpoint of AB, then the midpoint rectangle is AM1M2B. We’ve drawn T1T2 tangent to the
curve at T (where the midpoint ordinate intersects the curve). Since the shaded triangles
have equal areas, we see that area AM1M2B = area AT1T2B.† But area AT1T2B clearly
exceeds the true area, as does the area of the midpoint rectangle. This fact justifies the
right half of the inequality below; Figure N6–7 verifies the left half.

FIGURE N6–8

Generalizing to n subintervals, we conclude:
If the graph of f is concave down, then

T(n) ! f (x) dx ! M(n).

If the graph of f is concave up, then

M(n) ! f(x) dx ! T(n).

EXAMPLE 27

Write an inequality including L(n), R(n), M(n), T(n), and f(t) dt for the graph of f

shown in Figure N6–9.

FIGURE N6–9

t

f(t)

a b

 !a

b

 !a

b

 !a

b

M1
T

A M B

M2

T2

T1

†Note that the trapezoid AT1T2B is different from the trapezoids in Figure N6–7, which are like the ones we use in applying the trapezoid rule.
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Since f increases on [a,b] and is concave up, the inequality is

L(n) ! M(n) ! f (x) dx ! T(n) ! R(n).

Graphing a Function from Its Derivative; Another Look

EXAMPLE 28
Figure N6–10 is the graph of function f "(x); it consists of two line segments and
a semicircle. If f(0) = 1, sketch the graph of f (x). Identify any critical or inflec-
tion points of f and give their coordinates.

FIGURE N6–10

We know that if f " > 0 on an interval then f increases on the interval, while if
f " < 0 then f decreases; also, if f " is increasing on an interval then the graph of f
is concave up on the interval, while if f " is decreasing then the graph of f is con-
cave down. These statements lead to the following conclusions:

f increases on [0,1] and [3,5],

but f decreases on [1,3];

also the graph of f is concave down on [0,2];

but the graph of f is concave up on [2,5].

Additionally, since f "(1) = f "(3) = 0, f has critical points at x = 1 and x = 3.
As x passes through 1, the sign of f " changes from positive to negative; as x
passes through 3, the sign of f " changes from negative to positive. Therefore f (1)
is a local maximum and f (3) a local minimum. Since f changes concavity at x =
2, the latter is an inflection point on the graph of f.

These conclusions enable us to get the general shape of the curve, as 
displayed in Figure N6–11a.

1 2 3 4 5

2

f'(x)

 !a

b
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FIGURE N6–11a FIGURE N6–11b

All that remains is to evaluate f(x) at x = 1, 2, and 3. We use the Fundamental
Theorem of Calculus to accomplish this, finding f also at x = 4 and 5 for com-
pleteness.

We are given that f(0) = 1. Then

f (1) = f(0) + f !(x) dx

=    1  +     1         = 2,

where the integral yields the area of the triangle with height 2 and base 1;

f (2) = f(1) + f !(x) dx

=    2   –      " 1.2,

where the integral gives the area of a quadrant of a circle of radius 1 (this integral is
negative!);

f (3) = f(2) + f !(x) dx

= 1.2 –         (why?) " 0.4,

f (4) = f(3) + f !(x) dx

" 0.4  +          " 0.9,

where the integral is the area of the triangle with height 1 and base 1;

f (5) = f(4) + f !(x) dx

" 0.9  +         1.5 (why?) " 2.4.

So the function f(x) has a local maximum at (1,2), a point of inflection at (2,1.2),
and a local minimum at (3,0.4) where we have rounded to one decimal place
when necessary.

In Figure N6–11b, the graph of f is shown again, but now it incorporates the
information just obtained using the FTC.
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EXAMPLE 29
Readings from a car’s speedometer at 10-minute intervals during a 1-hour period
are given in the table; t = time in minutes, v = speed in miles per hour:

t 0 10 20 30 40 50 60
v 26 40 55 10 60 32 45

(a) Draw a graph that could represent the car’s speed during the hour.
(b) Approximate the distance traveled, using L(6), R(6), and T(6).
(c) Draw a graph that could represent the distance traveled during the hour.

(a) Any number of curves will do. The graph has only to pass through the points
given in the table of speeds, as does the graph in Figure N6–12a.

FIGURE N6–12a

(b) L(6) = (26 + 40 + 55 + 10 + 60 + 32) · = 37 mi;

R(6) = (40 + 55 + 10 + 60 + 32 + 45) · = 40 mi;

T(6) = (26 + 2 · 40 + 2 · 55 + 2 · 10 + 2 · 60 + 2 · 32 + 45) = 38 mi.

(c) To calculate the distance traveled during the hour, we use the methods 

demonstrated in Example 28. We know that, since v(t) > 0, s = v(t) dt is the

distance covered from time a to time b, where v(t) is the speed (or velocity).
Thus,

s(0) = 0,

s = 0 + v(t) dt = 0 + (26 + 40) • = ,

s = + v(t) dt = + (40 + 55) • = ,

·            ··            ··            ·

s = + v(t) dt = + (32 + 45) • = .
465
12

1
12

388
12 

!
5 6

6 6388
12

6
6







161
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1
12

66
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!
1 6

2 666
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1
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/
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It is left to the student to complete the missing steps above and to verify the dis-
tances in the following table (t = time in minutes, s = distance in miles):

t 0 10 20 30 40 50 60
s 0 5.5 13.4 18.8 24.7 32.3 38.8

Figure N6–12b is one possible graph for the distance covered during the hour.

FIGURE N6–12b

EXAMPLE 30
The graph of f (t) is given in Figure N6–13. If F(x) = f(t) dt, fill in the values 
for F(x) in the table:

FIGURE N6–13

We evaluate F(x) by finding areas of appropriate regions. For example,

F(0) = f(t)dt = 0 ;

F(1) = f(t)dt = (1)(2) = 1 (the area of a triangle);

F(2) = f(t)dt = (1)(2) + (1)(2) = 3 (a triangle plus a rectangle);

and F(4) = f(t)dt = (3 + 1)(2) – (1)(2) = 3 (a trapezoid minus a triangle).
1
2

1
2 !0

3

1
2 !0

2

1
2 !0

1

 !0

1

t

f(t)

0 1 2 3 4 5 6

1

2

–1
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 !0

x
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s =  distance (mi)

0 1
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Here is the completed table:

x 0 1 2 3 4 5 6
F(x) 0 1 3 4 3 1 –0.5

EXAMPLE 31
The graph of the function f (t) is shown in Figure N6–14. 

FIGURE N6–14

Let F(x) = f (t) dt. Decide whether each statement is true or false; justify your 

answers:

(i) If 4 < x < 6, F(x) > 0.
(ii) If 4 < x < 5, F !(x) > 0.

(iii) F "(6) < 0.

(i) is true. We know that, if a function g is positive on (a,b), then g(x) dx > 0,

whereas if g is negative on (a,b), then g(x) dx < 0. However, the area above the

x-axis between x = 1 and x = 4 is greater than that below the axis between 4 and
6. Since

F(x) = f (t) dt = f (t) dt + f (t) dt,

it follows that F(x) > 0 if 4 < x < 6.

(ii) is false. Since F!(x) = f(x) and f(x) < 0 if 4 < x < 5, then F!(x) < 0.
(iii) is false. Since F !(x) = f(x), F "(x) = f !(x). At x = 6, f !(x) > 0 (because f is

increasing). Therefore, F "(6) > 0.

 !4

x

 !1

4

 !1

x

 !a

b

!
a

b

 !1

x

x

y

–1

1

1 4 6

f
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EXAMPLE 32
Graphs of functions f (x), g(x), and h(x) are given in Figures N6–15a, N6–15b,
and N6–15c. Consider the following statements:

(I) f (x) = g!(x) (II) h(x) = f !(x) (III) g(x) = f (t) dt

Which of these statements is (are) true?
(A) I only
(B) II only
(C) III only
(D) all three
(E) none of them

The correct answer is D.
I is true since, for example, f(x) = 0

for the critical values of g: f is positive
where g increases, negative where g
decreases, and so on.

FIGURE N6–15a
mmmmmmmm

II is true for similar reasons.

III is also true. Verify that the value
of the integral g(x) increases on the
interval –2.5 < x < 0 (where f > 0),
decreases between the zeros of f (where
f < 0), then increases again when f
becomes positive.

FIGURE N6–15bmmmmmmmm

FIGURE N6–15cmmmmmmmm
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EXAMPLE 33
Assume the world use of copper has been increasing at a rate given by 
f (t) = 15e0.015 t, where t is measured in years, with t = 0 the beginning of 2000, and
f (t) is measured in millions of tons per year. 

(a) What definite integral gives the total amount of copper that was used for
the 5-year period from t = 0 to the beginning of the year 2005?

(b) Write out the terms in the left sum L(5) for the integral in (a). What do
the individual terms of L(5) mean in terms of the world use of copper?

(c) How good an approximation is L(5) for the definite integral in (a)?

(a) 15e0.015t dt.

(b) L(5) = 15e0.015 • 0 + 15e0.015 • 1 + 15e0.015 • 2 + 15e0.015 • 3 + 15e0.015 • 4. The five
terms on the right represent the world’s use of copper for the 5 years from 2000
until 2005.

(c) The answer to (a), using our calculator, is 77.884 million tons. 
L(5) = 77.301 million tons, so L(5) underestimates the projected world use of
copper during the 5-year period by approximately 583,000 tons.

Example 32 is an excellent instance of the FTC: if f = F !, then f (x) dx

gives the total change in F as x varies from a to b.

EXAMPLE 34

Suppose f(x) dx = 6, g(x) dx = –3, and g(x) dx = –1. Evaluate

(a) (f – g) (x) dx; (b) g(x) dx; (c) f (x – 3) dx.

(a) 9.

(b) g(x) dx = g(x) dx + g(x) dx = – g(x) dx + g(x) dx

= +1 + (–3) = –2.

(c) To evaluate f (x – 3) dx, let u = x – 3. Then du = dx and, when x = 2, 

u = –1; when x = 7, u = 4. Therefore f (x – 3) dx = f (u) du = 6.
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4
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4
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F. INTERPRETING In x AS AN AREA
It is quite common to define ln x, the natural logarithm of x, as a definite integral, as 
follows:

ln x = dt (x > 0).

This integral can be interpreted as the area bounded above by the curve y = (t > 0),

below by the t-axis, at the left by t = 1, and at the right by t = x (x > 1). See Figure 
N6–16.

FIGURE N6–16

Note that if x = 1 the above definition yields ln 1 = 0, and if 0 < x < 1 we can
rewrite as follows:

ln x = – dt,

showing that ln x < 0 if 0 < x < 1.
With this definition of ln x we can approximate ln x using rectangles or trapezoids.

EXAMPLE 35

Show that < ln 2 < 1.

Using the definition of ln x above yields ln 2 = dt, which we interpret as 

the area under y = , above the t-axis, and bounded at the left by t = 1 and at the 

right by t = 2 (the shaded region in Figure N6–16). Since y = is strictly decreasing, 

the area of the inscribed rectangle (height , width 1) is less than ln 2, which, in 

turn, is less than the area of the circumscribed rectangle (height 1, width 1). Thus 

• 1 < ln 2 < 1 • 1 or < ln 2 < 1.1
2
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1
t
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EXAMPLE 36
Find L(5), R(5), and T(5) for

dx.

Noting that for n = 5 subintervals on the interval [1,6] we have ∆x = 1, we

make a table of values for f(x) = :

x 1 2 3 4 5 6
f(x) 120 60 40 30 24 20

Then:

L(5) = (120 + 60 + 40 + 30 + 24) · 1 = 274;

R(5) = (60 + 40 + 30 + 24 + 20) · 1 = 174;

T(5) = (120 + 2 · 60 + 2 · 40 + 2 · 30 + 2 · 24 + 20) = 224.

The calculator finds that dx is approximately 215.011.

G. AVERAGE VALUE
If the function y = f(x) is integrable on the interval a " x " b, then we define the average
value of f from a to b to be

f (x) dx. (1)

Note that (1) is equivalent to

(average value of f ) • (b – a) = f (x) dx. (2)

If f (x) # 0 for all x on [a,b], we can interpret (2) in terms of areas as follows: The right-
hand expression represents the area under the curve of y = f (x), above the x-axis, and
bounded by the vertical lines x = a and x = b. The left-hand expression of (2) represents
the area of a rectangle with the same base (b – a) and with the average value of f as its
height. See Figure N6–17.

CAUTION: The average value of a function is not the same as the average rate of
change (see page 111). Before answering any quesiton about either of these, be sure to
reread the question carefully to be absolutely certain which is called for.
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FIGURE N6–17

EXAMPLE 37
The average value of f (x) = ln x on the interval [1,4] is

ln x dx = (x ln x – x) = .

EXAMPLE 38
The average value of ordinates of the semicircle y = on [–2,2] is given
by

dx = . (3)

In (3) we have used the fact that the definite integral equals exactly the area of a
semicircle of radius 2.

EXAMPLE 39
The graphs (a) through (e) in Figure N6–18 show the velocities of five cars mov-
ing along an east-west road (the x-axis) at time t, where 0 " t " 6. In each graph
the scales on the two axes are the same.

Which graph shows the car
(1) with constant acceleration?
(2) with the greatest initial acceleration?
(3) back at its starting point when t = 6?
(4) that is furthest from its starting point at t = 6?
(5) with the greatest average velocity?
(6) with the least average velocity?
(7) farthest to the left of its starting point when t = 6?

1
4

2
2 2

2π = π( )
4 2− x

 !−2

21
2 2− −( )

4 2− x

4 4 3
3

ln −
1

41
3 !1
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4 1−
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FIGURE N6–18

SOLUTIONS:
(1) (d), since acceleration is the derivative of velocity and in (d) v!, the slope,

is constant.
(2) (e), when t = 0 the slope of this v-curve (which equals acceleration) is

greatest.
(3) (b), since for this car the net distance traveled (given by the net area)

equals zero.
(4) (e), since the area under the v-curve is greatest, this car is farthest east.
(5) (e), the average velocity equals the total distance divided by 6, which is

the net area divided by 6 (see (4)).
(6) (a), since only for this car is the net area negative.
(7) (a) again, since net area is negative only for this car.

EXAMPLE 40
Identify each of the following quantities for the function f (x), whose graph is
shown in Figure N6–19a (note: F!(x) = f(x)):

(a) f (b) – f(a) (b)

(c) F(b) – F(a) (d)

FIGURE N6–19a FIGURE N6–19b
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−
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See Figure N6–19b.
(a) f(b) – f(a) = length of RQ.

(b) = = slope of secant PQ.

(c) F(b) – F(a) = f (x) dx = area of APDQB.

(d) = average value of f over [a,b] = length of CD, where CD • AB

or CD • (b – a) is equal to the area F(b) – F(a).

EXAMPLE 41
The graph in Figure N6–20 shows the speed v(t) of a car, in miles per hour, at
10-minute intervals during a 1-hour period.

(a) Give an upper and a lower estimate of the total distance traveled.
(b) When does the acceleration appear greatest?
(c) Estimate the acceleration when t = 20.
(d) Estimate the average speed of the car during the interval 30 ! t ! 50.

FIGURE N6–20

(a) A lower estimate, using minimum speeds and hr for 10 min, is

.

This yields 36 mi for the total distance traveled during the hour. An upper esti-

mate uses maximum speeds; it equals

or 55 mi for the total distance.
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(b) The acceleration, which is the slope of v(t), appears greatest at t = 5 min,
when the curve is steepest.

(c) To estimate the acceleration v!(t) at t = 20, we approximate the slope of
the curve at t = 20. The slope of the tangent at t = 20 appears to be equal to

(10 mph)/(10 min) = (10 mph)/( hr) = 60 mi/hr2.

(d) The average speed equals the distance traveled divided by the time. We
can approximate the distance from t = 30 to t = 50 by the area under the curve,
or, roughly, by the sum of the areas of a rectangle and a trapezoid:

Thus the average speed from t = 30 to t = 50 is

= 1 mpmin = 60 mph.

EXAMPLE 42
Given the graph of G(x) in Figure N6–21a, identify the following if G !(x) = g(x):

(a) g(b) (b) G(x) dx (c) g(x) dx (d) .

FIGURE N6–21a FIGURE N6–21b

See Figure N6–21b.
(a) g(b) is the slope of G(x) at b, the slope of line ST.

(b) G(x) dx is equal to the area under G(x) from a to b.

(c) g(x) dx = G(b) – G(a) = length of BT – length of BR = length of RT.

(d) = = slope of QT.length of 
length of 
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EXAMPLE 43
The function f (t) is graphed in Figure N6–22a. Let

F(x) = f (t) dt.

FIGURE N6–22a

(a) What is the domain of F?
(b) Find x, if F!(x) = 0.
(c) Find x, if F(x) = 0.
(d) Find x, if F(x) = 1.
(e) Find F!(6).
(f) Find F(6).
(g) Sketch the complete graph of F.

(a) The domain of f is [–2,1] and [2,6]. We choose the portion of this domain
that contains the lower limit of integration, 4. Thus the domain of 

F is 2 " < 6, or 4 " x < 12.

(b) Since F!(x) = f , F!(x) = 0 if f = 0. Then = 2 and x = 4.

(c) F(x) = 0 when = 4 or x = 8. F(8) = f (t) dt = 0.

(d) For F(x) to equal 1, we need a region under f whose left endpoint is 4 with 

area equal to 1. The region from 4 to 5 works nicely; so = 5 and x = 10.

(e) F!(6) = f = f (3) • = 2 • = 1.

(f) F(6) = f (t) dt = – (area of trapezoid) = .

(g) In Figure N6–22b we evaluate the areas in the original graph.
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FIGURE N6–22b

Measured from the lower limit of integration, 4, we have (with “f ” as an abbre-
viation for “f(t) dt”):

F(4) = f = –2 , F(6) = f = –1 ,

F(8) = f = 0, F(10) = f = 1,

F(12) = f = 2.

We note that, since F!(= f) is linear on (2,4), F is quadratic on (4,8); also,
since F! is positive and increasing on (2,3), the graph of F is increasing and con-
cave up on (4,6), while since F! is positive and decreasing on (3,4), the graph of
F is increasing but concave down on (6,8). Finally, since F! is constant on (4,6),
F is linear on (8,12). (See Figure N6–22c.)

FIGURE N6–22c
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Chapter Summary
In this chapter, we have reviewed definite integrals, starting with the Fundamental
Theorem of Calculus. We’ve looked at techniques for evaluating definite integrals alge-
braically, numerically, and graphically. We’ve reviewed Riemann sums, including the
left, right, and midpoint approximations as well as the trapezoid rule. We have also
looked at the average value of a function. 

This chapter also reviewed integrals based on parametrically defined functions, a
BC Calculus topic.

Practice Exercises
Part A. Directions: Answer these questions without using your calculator.

1. (x2 – x – 1) dx =

(A) (B) 0 (C) (D) –2 (E) –1

2. dx =

(A) (B) 1 – ln 2 (C) 1 – ln 2 (D) ln 2 (E) 1

3. =

(A) 1 (B) –2 (C) 4 (D) –1 (E) 2

4.

(A) 2 (B) (C) (D) 6 (E)

5. =

(A) ln 3 (B) (C) (D) ln (E) – 1

6. dx =

(A) 1 (B) (C) (D) –1 (E) 2
π
3

π
6

x

x4 2− !0

3
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16
9

1
2

3
2

ln

dy
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3 4u du+ =
 !−1
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7. (2t – 1)3 dt =

(A) (B) 6 (C) (D) 0 (E) 4

8. dx =

(A) (B) (C) (D) (E)

9. =

(A) (B) 0 (C) (D) (E)

10. e–x dx =

(A) – 1 (B) 1 – e (C) (D) 1 – (E)

11.

(A) e – 1 (B) (e – 1) (C) 2(e – 1) (D) (E) – 1

12. sin 2q dq =

(A) 2 (B) (C) –1 (D) (E) –2

13. =

(A) –ln 2 (B) (C) 2( – 1) (D) ln 2 (E) ln 2

14. If we let x = 2 sin q, then dx is equivalent to

(A) 2 (B) (C) 2

(D) (E) none of these
cos
sin

θ
θ

θd
 !1

2

cos
sin

2 θ
θ

θd
 
!

π

π

6

2cos
sin

θ
θ

θd
 
!

π

π

6

2cos
sin

2 θ
θ

θd
 !0

2

4 2− x
x !1

2

1
2

2
3
4

dz
z3 − !1

2

− 1
2

1
2

 !0

4π

e
2

e
2

1
2

xe dxx2

=
 !0

1

1
e

1
e

− 1
e

1
e

 !0

1

π
3

− π
2

π
6

π
2

dx
x9 2+ !−3

3

1
3

5
3

100
3

41
3

25
3

2
2

+ x
x !4

9

1
2

1
4

 !0

1
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15. cos2 q sin q dq =

(A) (B) (C) 1 (D) (E) 0

16. dx =

(A) (B) (e2 – 1) (C) 0 (D) 1 (E) e – 1

17. xex dx =

(A) –1 (B) e + 1 (C) 1 (D) e – 1 (E) (e – 1)

18. dq =

(A) ln 2 (B) (C) (D) (E)

19. du =

(A) (B) (C) ln (D) ln 3 (E) 1 – 

20. =

(A) (B) (C) (D) –1 (E)

21. cos2 q dq =

(A) (B) (C) (D) (E)

22. =

(A) (B) 1 (C) (D) (E) –1− 1
2

1
2

− 1
4

cos
sin

2
22

x dx
x 

!
π

π

12

4

π −
8

1
4

π +
8

1
2

π +
8

1
4

π
8

1
2

 !0

4π

1
3

2
3

− 2
3

− 1
3

u du
u( )2 21−!

2

2

3
3
2

8
9

ln 3

u
u2 1− 

!
2

2

ln 2
3
2

− 1
2

2ln
3
8

cos
sin

θ
θ1 2+ !0

6π

1
2

 !0

1

1
2

1
2

ln x
x !1

e

2
3

1
3

− 2
3

 !0

π

BC ONLY
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23. dx =

(A) e (B) 2 + e (C) (D) 1 + e (E) e – 1

24. dx =

(A) ln 2 (B) e (C) 1 + e (D) –ln 2 (E) ln

25. If we let x = tan q, then dx is equivalent to

(A) sec q dq (B) sec3 q dq (C) sec3 q dq

(D) sec2 q tan q dq (E) sec q dq

26. If the substitution u = is used, then is equivalent to

(A) (B) (C) 2

(D) 2 (E) 2

27. Using M(3), we find that the approximate area of the shaded region below is

(A) 9 (B) 19 (C) 36 (D) 38 (E) 54

28. The graph of a continuous function f passes through the points (4,2), (6,6), (7,5), 

and (10,8). Using trapezoids, we estimate that f(x)dx ≈

(A) 25 (B) 30 (C) 32 (D) 33 (E) 41

 
!

x

y

0

y = 6x – x 2

1 2 3 4 5 6

du
u u( )− 1 !0

3du
u u( )2 1− !1

2

du
u u( )( )− +1 1 !0

32
12

du
u − !1

2du
u2 1− !1

2

dx
x x + 1 !0

3

x + 1

 !1

3

 
!

π

π

4

3

 
!

π

π

4

3

 !1

3

 
!

π

π

4

3

1 2+ x
 !1

3

e + 1
2

e
e

x

x + 1 !0

1

1
e

e
e

x

x

−

−
+ 1

 !0

1

10

4
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29. The area of the shaded region in the figure is equal exactly to ln 3. If we approxi-
mate ln 3 using L(2) and R(2), which inequality follows?

(A) < < 1 (B) < dx < 2 (C) < < 2

(D) < dx < (E) < dx < 

30. Let A = cos x dx. We estimate A using the L, R, and T approximations with n = 100

subintervals. Which is true?

(A) L < A < T < R
(B) L < T < A < R
(C) R < A < T < L
(D) R < T < A < L
(E) The order cannot be determined.

31. dx =

(A) (B) 4 (C) (D) 5 (E)

32. dx =

(A) (B) (C) 5 (D) (E)

33. The average value of y = on its domain is

(A) 2 (B) 4 (C) 2 π (D) 4π (E) none of these

64 2− x

13
2

11
2

7
2

5
2

x + 1
 !−3

2

11
2

9
2

7
2

x
 !−1

3

 !0

1

3
2

1
x !1

35
6

1
2

1
x !2

31
3

1
x

dx
 !0

21
2

1
x !1

31
3

1
x

dx
 !1

21
2

x

y

0

y = 1
x

1 2 3
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34. The average value of cos x over the interval ! x ! is

(A) (B) (C) (D) (E)

35. The average value of csc2 x over the interval from x = to x = is

(A) (B) (C)

(D) (E)

Part B. Directions: Some of the following questions require the use of a graphing 
calculator.

36. Find the average value of function f, as shown in the graph below, on the interval
[0,5].

(A) 2 (B) 4 (C) 5 (D) 7 (E) 8

37. The integral dx gives the area of

(A) a circle of radius 4
(B) a semicircle of radius 4
(C) a quadrant of a circle of radius 4
(D) an ellipse whose semimajor axis is 4
(E) none of these

38.

(A) 0.25 (B) 0.414 (C) 1.000 (D) 1.414 (E) 2.000

1 2− =cos α αd
 !0

4π

16 2− x
 !−4

4

5

5

10

(2,10) (5,10)

 f

x

y

3 3 1( )−3 3

12
3 1

π
−( )

3
π

3 3
π

π
4

π
6

2
3π

3
2π

3 2 3( )−
π

1
2

3
π

π
2

π
3
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39. If f(x) is continuous on the interval a f x f b and a < c < b, then f(x) dx is equal to

(A) f(x) dx + f(x) dx (B) f(x) dx – f(x) dx

(C) f(x) dx + f(x) dx (D) f(x) dx – f(x) dx

(E) f(x) dx – f(x) dx

40. If f(x) is continuous on a f x f b, then

(A) f(x) dx = f(b) – f(a) (B) f(x) dx = – f(x) dx

(C) f(x) dx " 0 (D) f(t) dt = f #(x)

(E) f(t) dt = f(x) – f(a)

41. If f(x) is continuous on the interval a ! x ! b, if this interval is partitioned into n
equal subintervals of length )x, and if xk is a number in the kth subinterval, then 

)x is equal to

(A) f(b) – f(a)

(B) F(x) + C, where and C is an arbitrary constant

(C) f(x) dx

(D) F(b – a), where 

(E) none of these

42. If F#(x) = G#(x) for all x, then

(A) F#(x) dx = G#(x) dx (B) !F(x) dx = !G(x) dx

(C) F(x) dx = G(x) dx (D) !F(x) dx = !G(x) dx + C

(E) F(x) = G(x) for all x.
 !a

b

 !a

b

 !a

b

 !a

b

dF x
dx

f x
( )

( )=

 !a

b

dF x
dx

f x
( )

( )=

lim ( )
n k

n

f x
→ ∞ ∑

1

 !a

xd
dx

 !a

xd
dx !a

b

 !b

a

 !a

b

 !a

b

 !b

c

 !a

c

 !a

c

 !a

b

 !b

a

 !c

a

 !a

b

 !a

c

 !c

b

 !a

c

 !c

b

7_4324_APCalc_12Chapter6B  10/4/09  3:32 PM  Page 283



284 AP Calculus

43. If f(x) is continuous on the closed interval [a,b], then there exists at least one number

c, a < c < b, such that f(x) dx is equal to

(A) (B) f #(c)(b – a) (C) f(c)(b – a)

(D) (E) f(c)[f(b) – f(a)]

44. If f(x) is continuous on the closed interval [a,b] and k is a constant, then 

kf (x) dx is equal to

(A) k(b – a) (B) k[ f(b) – f(a)] (C) kF(b – a), where = f(x)

(D) k f(x) dx (E) "

45.

(A) (B) (C)

(D) (E) none of these

46. If F(u) = (2 – x2)3 dx, then F#(u) is equal to

(A) –6u(2 – u2)2 (B) (C) (2 – u2)3 – 1

(D) (2 – u2)3 (E) –2u(2 – u2)3

47. dt =

(A) (B) (C)

(D) (E)

48. If x = 4 cos q and y = 3 sin q, then xy dx is equivalent to

(A) 48 sin q cos2 q dq (B) 48 sin2 q cos q dq

(C) 36 sin q cos2 q dq (D) –48 sin q cos2 q dq

(E) 48 sin2 q cos q dq
 !0

3π

 !0

3π

 !2

4

 !2

4

 
!

π 3

0

 !2

4

2 2x xsinsin x2 1−

2
3

13 2 2(sin )x −2 12x xsin −sin t 2

sin t
 
!

π 2

2x
d
dx

( )2
4

1
4

2 4− −u

 !1

u

3 12 3x x +

2
3

1 1 13 3( )( )t t+ + −t
t

3

2

1
3

+t3 1+

x dx3 1+ =
 !0

td
dt

a

b[ ( )]kf x 2

2 !a

b

dF x
dx
( )

 !a

b

′
−

f c
b a

( )

f c
b a

( )
−

 !a

b
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49. A curve is defined by the parametric equations y = 2a cos2 q and x = 2a tan q, where

0 ! q ! U. Then the definite integral U y2 dx is equivalent to

(A) 4Ua2 cos4 q dq (B) 8Ua3 cos2 q dq (C) 8Ua3 cos2 q dq

(D) 8Ua3 cos2 q dq (E) 8Ua3 sin q cos2 q dq

50. A curve is given parametrically by x = 1 – cos t and y = t – sin t, where 0 ! t ! U. 

Then y dx is equivalent to

(A) sin t(t – sin t) dt (B) sin t(t – sin t) dt

(C) (t – sin t) dt (D) sin t(t – sin t) dt

(E) (t – sin t) dt

51. When dx is estimated using n = 5 subintervals of equal with, which 

is (are) true?

I.

II.

III.

(A) II only
(B) III only
(C) I and II only
(D) I and III only
(E) II and III only

52. Find the value of x at which the function y = x2 reaches its average value on the
interval [0,10].

(A) 4.642 (B) 5 (C) 5.313 (D) 5.774 (E) 7.071

T ( ) . . . . .5 0 2
2

1 2 1 0 2 2 1 0 4 2 1 0 6 2 1 0 82 2 2 2= + + + + + + + + + 22( )
M ( ) . . . . . (5 1 0 1 1 0 3 1 0 5 1 0 7 1 0 92 2 2 2 2= + + + + + + + + +( ) ⋅ 00 2. )

L( ) . . . .5 1 1 0 2 1 0 4 1 0 6 1 0 82 2 2 2= + + + + + + + +( )

1 2+ x
 !0

1

 !0

3 2

 !0

2 3π

 !0

2 3π

 
!

2 3π

π

 !0

3 2

 !0

3 2

 !0

4π

 !0

2a

 !0

4π

 
!

π

π

2 !0

4π

 !0

2a
BC ONLY
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Answer Key
1. C 12. B 23. A 34. C 45. A
2. B 13. E 24. E 35. C 46. D
3. E 14. C 25. C 36. E 47. E
4. B 15. D 26. B 37. B 48. E
5. D 16. A 27. D 38. B 49. C
6. A 17. C 28. D 39. D 50. D
7. D 18. E 29. E 40. B 51. E
8. A 19. A 30. D 41. C 52. D
9. C 20. E 31. D 42. A

10. D 21. C 32. E 43. C
11. B 22. C 33. C 44. D

Answers Explained
1. (C) The integral is equal to

= .

2. (B) Rewrite as dx. This equals

= .

3. (E) Rewrite as

– = –2(1 – 2).

4. (B) This integral equals

.

5. (D)
.

6. (A) Rewrite as

= – (1 – 2).

7. (D) (2t – 1)3(2dt) = · = 
( ) ( )2 1 1

4
2 0 1

4

4 4⋅ − − ⋅ −





1
20

1( )2 1
4

4t −1
2 !0

1
1
2

0

3

( ) ( ) •4 2
1
2

2 42 1 2 2− − = − −−x x dx x
 !0

3

− 1
2

= −1
2

3 1(ln ln )
2

32
2 3

1
2

2 3
dy

y
y

−
= −ln ( )

 !2

31
2

= −2
9

4 13 2 3 2( )

−1

0

( ) ( )• •3 4 3
1
3

2
3

3 41 2 3 2u du u+ = +
 !−1

01
3

0

3

( ) ( )4 1 2 41 2− − = − −−t dt t
 !0

3

2
1
3

2 1− −ln
1

2

x x−





1
3

ln

1 1
3

1−



•

x !1

2

− −7
6

1
6−1

11
3

1
2

3 2x x x− −
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8. (A) Divide:

.

9. (C) = 3 · = .

10. (D) You get –e–x = – (e–1 – 1).

11. (B) e x 2(2xdx) = e x 2 = (e – 1).

12. (B) Evaluate – cos 2q , which equals – (0 – 1).

13. (E) – = –ln (3 – z) = – (ln 1 – ln 2).

14. (C) If x = 2 sin q, = 2 cos q, dx = 2 cos q dq. When x = 1, q = ;

when x = 2, q = . The integral is equivalent to .

15. (D) Evaluate – cos2 q(–sin q dq). This equals cos3 q = (–1 –1).

16. (A) (ln x) ( dx) = ln2 x = (1 – 0).

17. (C) Use the Parts Formula with u = x and dv = ex dx. Then du = dx and v = ex.
The result is

! .

18. (E) = ln (1 + 2 sin q) and get (ln (1 + 1) – ln 1).

19. (A) Evaluate the integral du. It equals

or .1
2

3 1(ln ln )−
2

21
2

12ln( )u −

2
12

u
u − 

!
2

2
1
2

1
20

6π1
2

2
1 2

cos
sin
θ θ

θ
d

+ !0

6π
1
2

= − − −( ) ( )e e 0 1
0

1

= −( )xe ex x

0

1

e dxx )(xex −

1
21

e1
2

1
x !1

e

− 1
30

π
− 1

3 !0

π

( cos )( cos )
sin

2 2
2

θ θ θ
θ

d

 
!

π

π

6

2π
2

π
6

4 2− x

1

2−
−
dx

z3 !1

2

1
20

4π1
2

1
20

11
2 !0

1
1
2

0

1

= π − − π











1
3 4 4−3

31
3 3

1tan− x1
3

3
2

1
dx

x+ ( ) !−3

31
9

dx
x1

2

9+ !−3

31
9

= +



 − +



2 3

1
3

27 2 2
1
3

8• • • •

4

9

x x dx x x− +



 = +





1 2 1 2 1 2 3 21
2

2
1
2

2
3

•!
4

9
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20. (E) Evaluate (u2 – 1)–2 • 2u du and get

or .

Compare with Question 19.

21. (C) Use this identity: cos2 q = (1 + cos 2q). Then

= .

22. (C) Rewrite:

sin–2 2x cos 2x (2 dx) = 

.

23. (A) The integral is equivalent to

(1 + ex) dx = (x + ex) = (1 + e) – 1.

24. (E) Evaluate ln (ex + 1) , getting ln (e + 1) – ln 2.

25. (C) Note that dx = sec2 q dq and that . Be sure to express the 

limits as values of q: 1 = tan q yields q = ; = tan q yields q = .

26. (B) If u = , then u2 = x + 1, and 2u du = dx. When you substitute for the 

limits, you get 2 . Since u | 0 on its interval of integration, you

may divide numerator and denominator by it.

27. (D) On [0,6] with n = 3, ∆x = 2. Heights of rectangles at x = 1, 3, and 5 are 5,
9, and 5, respectively; M(3) = (5 + 9 + 5)(2).

28. (D) f(x)dx ≈ · 2 + · 1 + · 3 ≈ 33

29. (E) For L(2) use the circumscribed rectangles:

;

for R(2) use the inscribed rectangles:

.
1
2

1
1
3

1
5
6

• •+ =

1 1
1
2

1
3
2

• •+ =

5 8
2
+





6 5
2
+





2 6
2
+



 

!

u du
u u( )2 1− !1

2

x + 1

π
3

3
π
4

1 2+ =tan secθ θ

0

1

0

1

 !0

1

= − −





1
2

1
1

1
1 2

π

π

12

4

− 1
2

1
2

•
sin x 

!
π

π

12

41
2

1
2 4

1
2

0
π +



 −



0

4π
( cos ) sin1 2

1
2

1
2

2+ = +



θ θ θ θd

 !0

4π1
2

1
2

− −





1
2

1
3

1
12

2
−

−
1

2 12( )u

 
!

2

2
1
2

10

4
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30. (D) On [0,1] f(x) = cos x is decreasing , so R < L. Furthermore, f is concave
downward, so T < A. 

31. (D) Rewrite the integral to evaluate it, using the fact that x changes sign at 0.
The result is

(–x) dx + x dx = .

Draw a sketch of y = , and verify that the area over –1 ! x ! 3 equals 
5.

32. (E) Since x + 1 changes sign at x = –1, #x + 1#= – (x + 1) if x < –1 but equals 
x + 1 if x " –1. The given integral is therefore equivalent to

– (x + 1) dx + (x + 1) dx = 

.

Draw a sketch of y = , and verify that the area over –3 ! x ! 2 is .

33. (C) Because y = is a semicircle of radius 8, its area is 32π. The 
domain is [–8,8], or 16 units wide. Hence the average height of the 

function is .

34. (C) The average value is equal to cos x dx.

35. (C) The average value is equal to csc2 x dx.

36. (E) The average value is f(x)dx, where the integral represents the area 

of a trapezoid. That area is (5 + 3) · 10 = 40 making the average value 

(40).

37. (B) Since x2 + y2 = 16 is a circle, the given integral equals the area of a semicir-
cle of radius 4.

38. (B) Use a graphing calculator.

39. (D) Note that the integral from a to b is the sum of the two integrals from a to c
and from c to b.

40. (B) In (A), we’d need to use the antiderivative of f to evaluate the definite 
integral. In (C) if f(x) < 0, the definite integral would be negative. In (D)
and (E), the correct derivative of the definite integral would be f(x).

1
5

1
2

 !0

5
1

5 0−

 
!

π

π

6

41
4 6π − π

 
!

π

π

3

21
2 3π − π

32
16

π

64 2− x

13
2

x + 1

= − − + −1
2

0 4
1
2

9 0( ) ( )

−1

2

+ +( )x 1
2

2

−

−

3

1

− +( )x 1
2

2

 !−1

2

 !−

−

3

1

x

0

3

+ x2

2−1

0

− x2

2 !0

3

 !−1

0
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41. (C) This is the definition of the definite integral given on page 249. As anti-
derivatives of F ′ and G ′, F and G may differ by a constant.

42. (A) Find examples of functions F and G that show that (B), (C), and (D) are false.

43. (C) This is the Mean Value Theorem for Integrals (page 250). 

44. (D) This is theorem (2) on page 250. Prove by counterexamples that (A), (B),
(C), and (D) are false.

45. (A) This is a restatement of the Fundamental Theorem. In theorem (1) on page
250, interchange t and x.

46. (D) Apply theorem (1) on page 250, noting that

.

47. (E) Let y = and u = x2; then

y = 

By the Chain Rule, = , where theorem (1) on 

page 250 is used to find . Replace u by x2.

48. (E) Since dx = –4 sin q dq, you get the new integral –48 sin2 q cos q dq. Use

theorem (4) on page 250 to get the correct answer.

49. (C) Since dx = 2a sec2 q dq, you get 8Ua3 cos4 q sec2 q dq. Use the fact that

cos2 q sec2 q = 1.

50. (D) Use the facts that dx = sin t dt, that t = 0 when x = 0, and that t = when

x = .

51. (E) The expression for L(5) does not multiply the heights of the rectangles by 
∆x = 0.2.

52. (D) The average value is = . Solve x2 = .100
3

100
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291

A. AREA
To find an area, we

(1) draw a sketch of the given region and of a typical element;
(2) write the expression for the area of a typical rectangle; and
(3) set up the definite integral that is the limit of the Riemann sum of n areas as n Æ h.

FIGURE N7–1

ba

y

0 ∆x

∆A = f(x)∆ x
f (xk)

y = f (x)

(xk,  yk)

x

Applications of 
Integration to Geometry

CHAPTER7

Concepts and Skills
In this chapter, we will review using definite integrals to find areas and volumes;
specifically

• area under a curve,
• area between two curves,
• volumes of solids with known cross sections,
• and volumes of solids of revolution (using disks and washers).

We’ll also review related BC topics, including
• arc length;
• arc lengths, areas, and volumes involving parametrically defined functions;
• and area and arc length for polar curves.

Also for BC Calculus students, we’ll review the topic of improper integrals, including

• recognizing when an integral is improper
• and techniques for determining  whether an improper integral converges or diverges.
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If f(x) is nonnegative on [a,b], as in Figure N7–1, then f(xk) )x can be regarded as
the area of a typical approximating rectangle, and the area bounded by the x-axis, the
curve, and the vertical lines x = a and x = b is given exactly by

and hence by f(x) dx.

See Questions 1, 5, and 10 in the Practice Exercises at the end of this chapter.
If f(x) changes sign on the interval (Figure N7–2), we find the values of x for which

f(x) = 0 and note where the function is positive, where it is negative. The total area bounded
by the x-axis, the curve, x = a, and x = b is here given exactly by

f(x) dx – f(x) dx + f(x) dx,

where we have taken into account that f(xk) )x is a negative number if c < x < d.

FIGURE N7–2

See Question 11 in the Practice Exercises.
If x is given as a function of y, say x = g(y), then (Figure N7–3) the subdivisions are

made along the y-axis, and the area bounded by the y-axis, the curve, and the horizontal
lines y = a and y = b is given exactly by

g(y) dy.

See Questions 3 and 13 in the Practice Exercises.

 !a
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g y y
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 !c

d

 !a

c

 !a

b

lim ( )
n k

k

n

f x x
→ ∞

=
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FIGURE N7–3

A1. Area Between Curves
To find the area between curves (Figure N7–4), we first find where they intersect and
then write the area of a typical element for each region between the points of intersec-
tion. For the total area bounded by the curves y = f(x) and y = g(x) between x = a and 
x = e, we see that, if they intersect at [c,d], the total area is given exactly by

[ f(x) – g(x)] dx + [g(x) – f(x)] dx.

See Questions 4, 6, 7, and 9 in the Practice Exercises.

FIGURE N7–4

A2. Using Symmetry
Frequently we seek the area of a region that is symmetric to the x- or y-axis (or both) or to
the origin. In such cases it is almost always simpler to make use of this symmetry when inte-
grating. For example:

y

0

x = g( x)

y = f ( x)

x

(xk , f (xk ))

(xk , f (xk ))

(c,d )
(e, f )

(e,g)

(xk , g(xk ))

(a,b) (xk , g(xk ))

∆A = ( g(x) – f (x))∆x

∆A = ( f (x) – g(x))∆x

∆x∆x

 !c

e

 !a

c

y

b

a

∆ y

0

g( yk )

x = g( y)

x

(xk,  yk)

∆A = g(y)∆ y

Applications of Integration to Geometry 293

7_3679_APCalc_13Chapter7A  10/3/08  4:27 PM  Page 293



294 AP Calculus

• The area bounded by the x-axis and
this arch of the cosine curve is sym-
metric to the y-axis; hence it is twice
the area of the region to the right of
the y-axis.

• The area bounded by the parabola and
the line is symmetric to the x-axis;
hence it is twice the area of the region
above the x-axis.

• The ellipse is symmetric to both axes;
hence the area inside the ellipse is
four times the area in the first quad-
rant.

Evaluating f(x) dx Using a Graphing Calculator

The calculator is especially useful in evaluating definite integrals when the x-intercepts
are not easily determined otherwise or when an explicit antiderivative of f is not obvious (or
does not exist).

 !a

b

x

y

P(t) = (6 cos t, 3 sin t)

x

y

x = y2 + 2

x = 7

x

y

y = cos 4x
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EXAMPLE 1

Evaluate .

The integrand f(x) = e–x2

has no easy antiderivative. The calculator estimates
the value of the integral to be 0.747 to three decimal places.

EXAMPLE 2
In Figure N7–5, find the area under f(x) = –x4 + x2 + x + 10 and above the x-axis.

FIGURE N7–5

To get an accurate answer for the area f(x) dx, use the calculator to find 

the two intercepts, storing them as P and Q, and then evaluate the integral:

(–x4 + x2 + x + 10) dx = 32.832,

which is accurate to three decimal places.

Region Bounded by a Parametric Curve

If x and y are given parametrically, say by x = f(q), y = g(q), then to evaluate y dx, 

we express y, dx, and the limits a and b in terms of q and dq, then integrate. Remember
that we define dx to be x!(q) dq, or f !(q) dq.

See Questions 14, 15, and 44 in the Practice Exercises.

 !a

b

 
!

p

q

 
!

p

q

e dxx− 2

 !0

1

Q

P
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Region Bounded by Polar Curve

FIGURE N7–6

To find the area A bounded by the polar curve r = f (q) and the rays q = a and 
q = b (see Figure N7-6), we divide the region into n sectors like the one shown. If we
think of that element of area, ∆A, as a circular sector with radius r and central angle ∆q, its 

area is given by ∆ q. 

Summing the areas of all such sectors yields the area of the entire region:

.

The expression above is a Riemann sum, equivalent to this definite integral:

.

We have assumed above that f (q) ! 0 on [a, b]. We must be careful in determining
the limits a and b in (2); often it helps to think of the required area as that “swept out”
(or generated) as the radius vector (from the pole) rotates from q = a to q = b. It is also
useful to exploit symmetry of the curve wherever possible.

The relations between rectangular and polar coordinates, some common polar equa-
tions, and graphs of polar curves are given in the Appendix, starting on page 667.

A r d= ∫ 1
2

2

α

β
θ

A r
n k

k

n

k=
→∞ =

∑lim 1
2

2

1

∆θ

∆A r= 1
2

2

x
0

∆θ

θ = α

Q (r + ∆ r, θ + ∆θ)

P(r, θ)

r = f (θ) θ = β

∆A
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EXAMPLE 3
Find the area inside both the circle r = 3 sin q and the cardioid r = 1 + sin q.

Choosing an appropriate window, graph the curves on your calculator.
See Figure N7–7, where one half of the required area is shaded. Since 3 sin q =

1 + sin q when q = or , we see that the desired area is twice the sum of

two parts: the area of the circle swept out by q as it varies from 0 to plus the

area of the cardioid swept out by a radius vector as q varies from to . 

Consequently

A = 2 " # = .

FIGURE N7–7

See also Questions 46 and 47 in the Practice Exercises.

x
0

θ = 
2
π

θ = 
6
πθ = 6

5π

r = 3 sin θ

r = 1 + sin θ

5
4
π1

2
1 2( sin )+ θ θd

 
!

π

π

6

29
2

2sin θ θd +
 !0

6π

π
2

π
6

π
6

5
6
ππ

6
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298 AP Calculus

EXAMPLE 4
Find the area enclosed by the cardioid r = 2(1 + cos q).

We graphed the cardioid on our calculator, using polar mode, in the window
[–2,5] ¥ [–3,3] with q in [0,2π].

FIGURE N7–8

See Figure N7–8. We use the symmetry of the curve with respect to the polar
axis and write

r 2 dq = 4 (1 + cos q)2 dq

(1 + 2 cos q + cos2 q) dq

= 6U.

B. VOLUME

B1. Solids with Known Cross Sections
If the area of a cross section of a solid is known and can be expressed in terms of x, then
the volume of a typical slice, )V, can be determined. The volume of the solid is obtained,
as usual, by letting the number of slices increase indefinitely. In Figure N7–9, the slices
are taken perpendicular to the x-axis so that )V = A(x) )x, where A(x) is the area of a
cross section and )x is the thickness of the slice.

0

π
= + + +





4 2
2

2
4

θ θ θ θ
sin

sin

1 2
1
2

2
2

+ + +



cos

cosθ θ θd
 !0

π

= 4

 !0

π

= 4

 !0

π

 !0

π

A = 2
1
2

•
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FIGURE N7–9

EXAMPLE 5
A solid has as its base the circle x2 + y2 = 9, and all cross sections parallel to the
y-axis are squares. Find the volume of the solid.

FIGURE N7–10
In Figure N7–10 the element of volume is a square prism with sides of length 2y
and thickness ∆x, so 

∆V = (2y)2 ∆x = 4y2 ∆x = 4(9 – x2) ∆x.

Now, using symmetry across the y-axis, we find, the volume of the solid:

Questions 25, 26, and 27 in the Practice Exercies illustrate solids with known cross 
sections.

When the cross section of a solid is a circle, a typical slice is a disk. When the cross
section is the region between two circles, a typical slice is a washer—a disk with a hole
in it. Both of these solids, which are special cases of solids with known cross sections,
can be generated by revolving a plane area about a fixed line.

V x dx x dx x x= −( ) = −( ) = −



∫ ∫2 4 9 8 9 8 9

3
2

0

3 2

0

3 3

 =
0

3

144.

ΔV

Δ x

y

2y
x

x

y

z

0

∆ x

(xk ,yk)
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300 AP Calculus

B2. Solids of Revolution
A solid of revolution is obtained when a plane region is revolved about a fixed line, called
the axis of revolution. There are two major methods of obtaining the volume of a solid of
revolution “disks” and “washers.”

DISKS

The region bounded by a curve and the x-axis is revolved around the x-axis, forming the
solid of revolution seen in Figure N7-11. We think of the “rectangular strip” of the region at
the left as generating the solid disk, ∆V (an element of the volume), shown at the right.

FIGURE N7–11

This disk is a cylinder whose radius, r, is the height of the rectangular strip, and whose
height is the thickness of the strip, ∆x. Thus

∆V = Ur2 ∆x and .

EXAMPLE 6
Find the volume of a sphere of radius r.

If the region bounded by a semicircle (with center O and radius r) and its
diameter is revolved about the x-axis, the solid of revolution obtained is a sphere
of radius r, as seen in Figure N7–12.

FIGURE N7–12

x

y

0
x

y

–r r0 ∆x

(x,y)

V r dx
a

b
= π ∫ 2
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a b

∆ x
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r r {
x

Disks

x

r

∆ x
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The volume )V of a typical disk is given by )V = Uy2 )x. The equation of
the circle is x2 + y2 = r2. To find the volume of the sphere, we form a Riemann
sum whose limit as n becomes infinite is a definite integral. Then,

V = Uy2 dx = U (r2 – x2) dx = U $ = .

EXAMPLE 7
Find the volume of the solid generated when the region bounded by y = x2, x = 2,
and y = 0 is rotated about the line x = 2 as shown in Figure N7–13.

FIGURE N7–13

See Questions 18, 49, 51, 52, and 53 in the Practice Exercises for examples of find-
ing volumes by disks.

WASHERS

A washer is a disk with a hole in it. The volume may be regarded as the difference in the
volumes of two concentric disks. As an example, consider the volume of the solid of rev-
olution formed when the region bounded by the two curves seen in Figure N7–14 is
revolved around the x-axis. We think of the rectangular strip of the region at the left as
generating the washer, ∆V (an element of the volume), shown at the right.

FIGURE N7–14
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This washer’s height is the thickness of the rectangular strip, ∆x. The washer is a
disk whose outer radius, R, is the distance to the top of the rectangular strip, with the disk
of inner radius r (the distance to the bottom of the strip) removed. Thus:

∆V = UR 2 ∆x – Ur2 ∆x = U(R2 – r 2) ∆x and dx.

EXAMPLE 8
Find the volume obtained when the region bounded by y = x2 and y = 2x is
revolved about the x-axis. The curves intersect at the origin and at (2, 4), as
shown in Figure N7–15. Note that we distinguish between the two functions by
letting (x, y1) be a point on the line and (x, y2) be a point on the parabola.

FIGURE N7–15

EXAMPLE 9
Find the volume of the solid generated when the region bounded by y = x2, x = 2,
and y = 0 is rotated about the y-axis, as shown in Figure N7–16.

FIGURE N7–16
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See Questions 19, 21, 48, 50, and 54 in the Practice Exercises for examples in
which washers are regarded as the differences of two disks.

Occasionally when more than one method is satisfactory we try to use the most effi-
cient. In the answers to each question in the Practice Exercises, a sketch is shown and the
type and volume of a typical element are given. The required volume is then found by
letting the number of elements become infinite and applying the Fundamental Theorem.

SHELLS‡

A cylindrical shell may be regarded as the outer skin of a cylinder. Its volume is the vol-
ume of the rectangular solid formed when this skin is peeled from the cylinder and flat-
tened out. As an example, consider the volume of the solid of revolution formed when
the region bounded by the two curves seen in Figure N7–17 is revolved around the 
y-axis. We think of the rectangular strip of the region at the left as generating the shell,
∆V (an element of the volume), shown at the right.

FIGURE N7–17

This shell’s radius, r, is the distance from the axis to the rectangular strip, and its
height is the height of the rectangular strip, h. When the shell is unwound and flattened to
form a rectangular solid, the length of the solid is the circumference of the cylinder, 2πr,
its height is the height of the cylinder, h, and its thickness is the thickness of the rectan-
gular strip, ∆x. Thus:

∆V = 2Urh ∆x and V rh dx
a

b
= π ∫2 .

x

y

∆x

r

∆x

h

h

r

2πr ∆x

Applications of Integration to Geometry 303

‡Examples 10–12 involve finding volumes by the method of shells. Although shells are not included in the Topic Outline, we
include this method here because it is often the most efficient (and elegant) way to find a volume. No question requiring shells
will appear on the AP exam.
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EXAMPLE 10
Find the volume of the solid generated when the region bounded by y = x2, x = 2,
and y = 0 is rotated about the line x = 2. See Figure N7–18.

About x = 2.
Shell.

r = 2 – x.
h = y.

) V = 2U(2 – x)y )x
= 2U(2 – x)x2 )x.

2U (2 – x)x2 dx = .

(Note that we obtained the same
result using disks in Example 7.)

FIGURE N7–18

EXAMPLE 11
The region bounded by y = 3x – x2 and y = x is rotated about the y-axis. Find the
volume of the solid obtained. See Figure N7–19.

About the y-axis.
Shell.
)V = 2Ux(y2 – y1) )x

= 2Ux(3x – x2) )x.

2U (3x2 – x3) dx = .

FIGURE N7–19x
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EXAMPLE 12
Find the volume obtained when the region bounded by y = x2 and y = 2x is
revolved about the x-axis. The curves intersect at the origin and at (2,4), as
shown in Figure N7–20. Note that we distinguish between the two functions by
letting (x1, y) be a point on the line and (x2, y) be a point on the parabola.

FIGURE N7–20

NOTE: On pages 315 and 316 in Examples 32 and 33 we consider finding the vol-
umes of solids using shells that lead to improper integrals.

C. ARC LENGTH
If the derivative of a function y = f(x) is continuous on the interval a " x " b, then the
length s of the arc of the curve of y = f(x) from the point where x = a to the point where x =
b is given by

. (1)

Here a small piece of the curve is equal approximately to .
As )x Æ 0, the sum of these pieces approaches the definite integral above.
If the derivative of the function x = g(y) is continuous on the interval c # y # d,

then the length s of the arc from y = c to y = d is given by

. (2)

If a curve is defined parametrically by the equations x = x(t) and y = y(t), if the
derivatives of the functions x(t) and y(t) are continuous on [ta, tb], (and if the curve does
not intersect itself ), then the length of the arc from t = ta to t = tb is given by

. (3)
dx
dt

dy
dt

dt



 + 





2 2
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r = y.
h = x2 – x1.

∆V = 2πy(x2 – x1) ∆y.

V = 2π y(x2 – x1) dx

= π y dx

= .

(Note that we obtained the same
result using washers in Example 8.)
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The parenthetical clause above is equivalent to the requirement that the curve is traced
out just once as t varies from ta to tb.

As indicated in Equation (4), formulas (1), (2), and (3) can all be derived easily
from the very simple relation

ds2 = dx2 + dy2 (4)

and can be remembered by visualizing Figure N7–21.

FIGURE N7–21

EXAMPLE 13
Find the length, to three decimal places, of the arc of y = x 3/2 from 
x = 1 to x = 8.

Here x1/2, so, by (1),

.

EXAMPLE 14
Find the length, to three decimal places, of the curve (x – 2)2 = 4y3 from y = 0 to 
y = 1.

Since
x – 2 = 2y3/2 and ,

Equation (2) above yields

,

again using the calculator to evaluate the definite integral.

EXAMPLE 15
The position (x, y) of a particle at time t is given parametrically by 

x = t2 and y = – t. Find the distance the particle travels between t = 1 and t = 2.

We can use (4): ds2 = dx2 + dy2, where dx = 2t dt and dy = (t2 – 1) dt. Thus,

,ds t t t dt= + − +4 2 12 4 2

t3

3

1 9 2 268+ ≈y dy .
 !0

1

s =

dx
dy

y= 3 1 2

1 9
4

22 803+ ≈x dx .
 !1

8

s =

dy
dx

= 3
2

ds dy

dx

306 AP Calculus

BC ONLY

7_3679_APCalc_13Chapter7A  10/3/08  4:27 PM  Page 306



and

.

EXAMPLE 16

Find the length of the arc of y = ln sec x from x = 0 to x = . Here

,

so

.

D. IMPROPER INTEGRALS
There are two classes of improper integrals:

(1) those in which at least one of the limits of integration is infinite (the interval is not
bounded); and 

(2) those of the type f(x) dx, where f(x) has a point of discontinuity (becoming infinite) 

at x = c, a " c " b (the function is not bounded).
Illustrations of improper integrals of class (1) are:

; ; ; ;

(n a real number); ;

; ; .

The following improper integrals are of class (2):

; (n a real number); ;

; ; ;

; (n real; a " c " b);

; .
2
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308 AP Calculus

Sometimes an improper integral belongs to both classes. Consider, for example,

; ; .

In each case, the interval is not bounded and the integrand fails to exist at some point on
the interval of integration.

Note, however, that each integral of the following set is proper:

; ; ;

ln (x + 1) dx;      .

The integrand, in every example above, is defined at each number on the interval of inte-
gration.

Improper integrals of class (1), where the interval is not bounded, are handled as
limits:

,

where f is continuous on [a,b]. If the limit on the right exists, the improper integral on the
left is said to converge to this limit; if the limit on the right fails to exist, we say that the
improper integral diverges (or is meaningless).

The evaluation of improper integrals of class (1) is illustrated in Examples 17–23.

EXAMPLE 17

= x–2 dx = – = – = 1. The given integral

thus converges to 1. In Figure N7–22 we interpret as the area above the

x-axis, under the curve of y = , and bounded at the left by the vertical line 

x = 1.

FIGURE N7–22

x

y

0

y =
x2
1

x2
dx

x2
dx= lim

b→∞

1 b

∞

1
!

b

1
!

1
2x

dx
x2 !1

∞

1 1
b

−



lim

b→ ∞1

b1
x

lim
b→ ∞ !1

b

lim
b→ ∞

dx
x2 !1

∞

f x dx( )
 !a

b

 
f x dx

b
( ) lim=

Æ• !a

•

dx
ex + 1 !−3

3

 !0

e

dx
xcos !0

6πdx
x2 4+ !−2

2dx
x + 2 !−1

3

dx
x1 −  !-•

1dx

x x+ 4  !0

•dx
x  !0

•

BC ONLY

Converge
Diverge

7_3679_APCalc_13Chapter7A  10/3/08  4:27 PM  Page 308



Applications of Integration to Geometry 309

EXAMPLE 18

. 

Then diverges. 

It can be proved that converges if p > 1 but diverges if p " 1. Figure 

N7–23 gives a geometric interpretation in terms of area of for p = ,1, 2. Only the 

first-quadrant area under y = bounded at the left by x = 1 exists. Note that

.

FIGURE N7–23

EXAMPLE 19

tan–1 tan–1 .

EXAMPLE 20

− − =−( ) .e b 1 1
 
=

Æ•
lim
b

e dyy−

 !0

b

 
=

Æ•
lim
b

dy
ey  !0

•

= =π π1
3 2 6

•
b
3

1
3 

=
Æ•

lim
b0

bx
3

1
3 

=
Æ•

lim
b
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x2 9+ !0

b

=
→ ∞

lim
b

dx
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•

x

y

0

y =
x2
1

y = x
1

y =
x
1

1 b

= + ∞
1

b

 
dx
x

x
b

=
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lim ln
 !1
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1
2x

1
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dx
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dx
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•

dx
x  !1

•

 
= = +•
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x dx x
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310 AP Calculus

EXAMPLE 21

= – .

EXAMPLE 22

e–x dx – e–x – (1 – e–b) = +h. Thus, this improper integral

diverges.

EXAMPLE 23

cos x dx sin x sin b. Since this limit does not exist (sin b takes

on values between –1 and 1 as b Æ h), it follows that the given integral diverges.
Note, however, that it does not become infinite; rather, it diverges by oscillation.

Improper integrals of class (2), where the function has an infinite discontinuity, are
handled as follows.

To investigate f(x) dx, where f becomes infinite at x = a, we define f(x) dx to 

be f(x) dx. The given integral then converges or diverges according to whether 

the limit does or does not exist. If f has its discontinuity at b, we define f(x) dx to 

be f(x) dx; again, the given integral converges or diverges as the limit does or  

does not exist. When, finally, the integrand has a discontinuity at an interior point c on
the interval of integration (a < c < b), we let

f(x) dx f(x) dx + f(x) dx.

Now the improper integral converges only if both of the limits exist. If either limit does
not exist, the improper integral diverges.

The evaluation of improper integrals of class (2) is illustrated in Examples 24–31.

m

b

 
!lim

m c→ +

a

k

!=
→ −
lim
k c !a

b

a

k
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k b→ −

 !a

b

k

b
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 !a

b

 !a

b

 
=

Æ•
lim
bb

0

 
=

Æ•
lim
b  !0

•
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Æ-•
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=

Æ-•
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1 11
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lim
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=
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lim
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 !b

0
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lim
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z( )− 1 2
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0
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Applications of Integration to Geometry 311

EXAMPLE 24

x 2/3 (1 – k2/3) = .

In Figure N7–24 we interpret this integral as the first-quadrant area under y = 

and to the left of x = 1.

FIGURE N7–24

EXAMPLE 25

x –3 dx .
Therefore, this

integral diverges.

It can be shown that (a > 0) converges if p < 1 but diverges if p $ 1. 

Figure N7–25 shows an interpretation of in terms of areas where p = , 

1, and 3. Only the first-quadrant area under y = to the left of x = 1 exists.

Note that

.= − = + ∞
→ +
lim (ln ln )
k

k
0

1
k

1dx
x

x
k

=
→ +
lim ln

0 !0

1

1
3 x

1
3
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1
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− 1

2
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− 1
2 2x
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k 0

dx
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FIGURE N7–25

EXAMPLE 26

sin–1 = sin–1 1 – sin–1 0 = .

EXAMPLE 27

– (3 – t)–2(–dt) = +h. 

This integral diverges.

EXAMPLE 28

(x – 1)–2/3 dx (x – 1)–2/3 dx =

3(x – 1)1/3 3(x – 1)1/3 = 3(0 + 1) + 3(1 – 0) = 6.

EXAMPLE 29

x–2 dx x–2 dx =

. Neither limit exists; the integral diverges.
m

2

− 1
x

+
→ +

lim
m 0−2

k

− 1
x→ −

lim
k 0

m

2

 
!+

→ +
lim

m 00
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!=
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2
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2

+
→ +

lim
m 10
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lim
k 1
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2

 
!+
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m 1

0
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!=
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k 1
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x( )− 1 2 3

 !0

2

2
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3 − t=
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lim
k 32
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!=
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k 3
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t( )3 2− !2

3
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k 2
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k 2
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2
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1
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3
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This example demonstrates how careful one must be to notice a discontinuity
at an interior point. If it were overlooked, one might proceed as follows:

.

Since this integrand is positive except at zero, the result obtained is clearly
meaningless. Figure N7–26 shows the impossibility of this answer.

FIGURE N7–26

THE COMPARISON TEST

We can often determine whether an improper integral converges or diverges by compar-
ing it to a known integral on the same interval. This method is especially helpful when it
is not easy to actually evaluate the appropriate limit by finding an antiderivative for the
integrand. There are two cases.

(1) Convergence. If on the interval of integration f(x) ≤ g(x) and g(x) dx is known to 

converge, then f(x) dx also converges. For example, consider dx. We know 

that dx converges. Since , the improper integral dx must  

also converge.

(2) Divergence. If on the interval of integration f(x) ≥ g(x) and g(x) dx is known to 

diverge, then f(x) dx also diverges. For example, consider dx. We know that   

dx diverges. Since sec x ≥ 1, it follows that ; hence the improper 

integral dx must also diverge.1
13x + !0

1

sec x
x x3 3

1≥1
3x

!
0

1

sec x
x3!

0

1
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!

1
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1
3 3x x+

<1
3x  !1

•

1
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•
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1

x
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0–2 2
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2
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1= −
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2
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EXAMPLE 30

Determine whether or not converges.

Although there is no elementary function whose derivative is , we can 

still show that the given improper integral converges. Note, first, that if x $ 1
then x2 $ x, so that –x2 " –x and " e–x. Furthermore,

dx = = .

Since dx converges and ≤ e–x, dx converges by the 

Comparison Test.

EXAMPLE 31

Show that converges.

= + ;

we will use the Comparison Test to show that both of these integrals converge.

Since if 0 < x " 1, then x + x4 > x and , it follows that

.

We know that converges; hence must converge.

Further, if x $ 1 then x + x4 $ x4 and $ = x2, so

" (x $ 1).

We know that dx converges, hence also converges.

Thus the given integral, , converges.

NOTE: Examples 32 and 33 involve finding the volumes of solids. Both lead to
improper integrals.

dx

x x+ 4 !0

∞

dx
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∞1
2x !1
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1
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1dx
x !0

1

 

1 1
0 1

4x x x
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∞dx

x x+ 4 !0

1dx

x x+ 4 !0

∞
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EXAMPLE 32
Find the volume, if it exists, of the solid generated by rotating the region in the  

first quadrant bounded above by y = , at the left by x = 1, and below by y = 0,

about the x-axis. See Figure N7–27.

FIGURE N7–27

About the x-axis.
Disk.

∆V = πy2 ∆x.

V = π y2 dx = π dx

= π dx = π.1
2x1

k

 
!lim

k→∞

1
2x !1

∞

 !1

∞

x

y

0

r

(1,0) ∆x

(x,y)

1
x
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EXAMPLE 33‡

Find the volume, if it exists, of the solid generated by rotating the region in the  

first quadrant bounded above by y = , at the left by x = 1, and below by y = 0,

about the y-axis. See Figure N7–28.

FIGURE N7–28

About the y-axis.
Shell.
)V = 2Uxy )x = 2U )x.

Note that 2U dx diverges to infinity.

Chapter Summary
In this chapter, we have reviewed how to find areas and volumes using definite integrals.
We’ve looked at area under a curve and between two curves. We’ve reviewed volumes 
of solids with known cross sections, and the methods of disks and washers for finding
volumes of solids of revolution.

For BC Calculus students, we’ve applied these techniques to parametrically defined
functions and polar curves and added methods for finding lengths of arc. We’ve also
looked at improper integrals and tests for determining convergence and divergence.

 !1

∞

x

y

0

x

(1,0) ∆x

(x,y)

1
x
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‡No question requiring the use of shells will appear on the AP exam.
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Practice Exercises
Part A. Directions: Answer these questions without using your calculator.

AREA
In Questions 1–11, choose the alternative that gives the area of the region whose

boundaries are given.

1. The curve of y = x2, y = 0, x = –1, and x = 2.

(A) (B) (C) 3 (D) 5 (E) none of these

2. The parabola y = x2 – 3 and the line y = 1.

(A) (B) 32 (C) (D) (E) none of these

3. The curve of x = y2 – 1 and the y-axis.

(A) (B) (C) (D) (E) none of these

4. The parabola y2 = x and the line x + y = 2.

(A) (B) (C) (D) (E)

5. The curve of y = , the x-axis, and the vertical lines x = –2 and x = 2.

(A) (B) (C) 2U (D) U (E) none of these

6. The parabolas x = y2 – 5y and x = 3y – y2.

(A) (B) (C) (D) (E) none of these

7. The curve of y = and x + y = 3.

(A) (B) (C)

(D) (E)

8. In the first quadrant, bounded below by the x-axis and above by the curves of 
y = sin x and y = cos x.

(A) (B) (C) 2 (D) (E) 2 222 2+2 2−

3
2

4− ln
5
2

1
2

4− ln
3
2

1
2

2 2− ln

2
x

128
3

64
3

139
6

32
3

π
2

π
4

4
42x +

29
6

9
2

11
6

3
2

5
2

1
2

8
3

2
3

4
3

16
3

32
3

8
3

7
3

11
3
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9. Bounded above by the curve y = sin x and below by y = cos x from x = to x = .

(A) (B) (C)

(D) (E)

10. The curve y = cot x, the line x = , and the x-axis.

(A) ln 2 (B) ln (C) 1 (D) ln 2 (E) 2

11. The curve of y = x3 – 2x2 – 3x and the x-axis.

(A) (B) (C) (D) (E) none of these

12. The total area bounded by the cubic x = y3 – y and the line x = 3y is equal to

(A) 4 (B) (C) 8 (D) (E) 16

13. The area bounded by y = ex, y = 2, and the y-axis is equal to

(A) 3 – e (B) e2 – 1 (C) e2 + 1

(D) 2ln 2 – 1 (E) 2 ln 2 – 3

14. The area enclosed by the ellipse with parametric equations x = 2 cos q and 
y = 3 sin q equals

(A) 6U (B) U (C) 3U (D) U (E) none of these

15. The area enclosed by one arch of the cycloid with parametric equations 
x = q – sin q and y = 1 – cos q equals

(A) (B) 3U (C) 2U (D) 6U (E) none of these

16. The area enclosed by the curve y 2 = x(1 – x) is given by

(A) 2 (B) 2 (C) 4

(D) U (E) 2U

x x dx− 2

 !0

1

x x dx− 2

 !0

1

x x dx1 −
 !0

1

3
2
π

3
2

9
2

32
3

16
3

71
6

45
4

79
6

28
3

1
2

1
2

1
2

π
4

2 2 1( )+2 2 1( )−

1
2 2

2
2

2 2

5
4
ππ

4
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Applications of Integration to Geometry 319

17. The figure below shows part of the curve of y = x3 and a rectangle with two vertices
at (0, 0) and (c, 0). What is the ratio of the area of the rectangle to the shaded part of
it above the cubic?

(A) 3 : 4 (B) 5 : 4 (C) 4 : 3 (D) 3 : 1 (E) 2 : 1

VOLUME
In Questions 18–24 the region whose boundaries are given is rotated about the line

indicated. Choose the alternative that gives the volume of the solid generated.

18. y = x2, x = 2, and y = 0; about the x-axis.

(A) (B) 8U (C) (D) (E)

19. y = x2, x = 2, and y = 0; about the y-axis.

(A) (B) 4U (C) (D) 8U (E)

20. The first quadrant region bounded by y = x2, the y-axis, and y = 4; about the y-axis.

(A) 8U (B) 4U (C) (D) (E)

21. y = x2 and y = 4; about the x-axis.

(A) (B) (C)

(D) (E) none of these128
5

π

256
5

π512
15

π64
5

π

16
3

π32
3

π64
3

π

8
3
π32

5
π16

3
π

32
5

π128
5

π8
3
π64

3
π

x

y

(0,0) (c,0)
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320 AP Calculus

22. y = x2 and y = 4; about the line y = 4.

(A) (B) (C) (D) (E)

23. An arch of y = sin x and the x-axis; about the x-axis.

(A) (B) (C) (D) U2 (E) U(U – 1)

24. A trapezoid with vertices at (2, 0), (2, 2), (4, 0), and (4, 4); about the x-axis.

(A) (B) (C)

(D) (E) none of these 

25. The base of a solid is a circle of radius a, and every plane section perpendicular to
a diameter is a square. The solid has volume

(A) (B) 2Ua3 (C) 4Ua3 (D) (E)

26. The base of a solid is the region bounded by the parabola x2 = 8y and the line y = 4,
and each plane section perpendicular to the y-axis is an equilateral triangle. The
volume of the solid is

(A) (B) (C)

(D) 32 (E) none of these

27. The base of a solid is the region bounded by y = e–x, the x-axis, the y-axis, and the
line x = 1. Each cross section perpendicular to the x-axis is a square. The volume
of the solid is

(A) (B) e2 – 1 (C) 1 – 

(D) (E)

ARC LENGTH

28. The length of the arc of the curve y2 = x3 cut off by the line x = 4 is

(A) (B) (C)

(D) (E) none of these
16
27

10 10

16
27

10 13 2( )−8
27

10 13 2( )−4
3

10 10 1( )−

1
2

1
1

2−



e

e2 1
2
−

1
2e

e2

2

32 364 364 3
3

8
3

3π
a

16
3

3a
8
3

3a

112
3

π

92
3

π128
3

π56
3

π

π2

4
π2

2
π π −



2

1
2

64
3

π512
15

π512
5

π256
5

π256
15

π
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29. The length of the arc of y = ln cos x from x = to x = equals

(A) (B) 2 (C)

(D) (E)

IMPROPER INTEGRALS

30. e–x dx =

(A) 1 (B) (C) –1 (D) (E) none of these

31. =

(A) 1 (B) (C) (D) –1 (E) none of these

32. =

(A) (B) (C) 3 (D) 1 (E) none of these

33.

(A) 6 (B) (C) (D) 0 (E) none of these

34. =

(A) 2 (B) –2 (C) 0 (D) (E) none of these

35.

(A) –2 (B) (C) 2 (D) (E) none of these
1
2

2
3

sin
cos
x

x
dx

1 − !0

2π

2
3

dx
x( )− 3 2

 !2

4

2
3

6
5

dx
x( )−

=
3 2 3

 !2

4

3
2

2
3

dt
t − 13

 !1

2

− 1
2e

1
e

du
u !0

e

− 1
e

1
e

 !0

∞

ln ( )
ln ( )

3 2
2 1

+
+

3 2−

ln ( )1 3 2+ −ln
3 2
2 1

+
+

π
3

π
4
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In Questions 36–40, choose the alternative that gives the area, if it exists, of the
region described.

36. In the first quadrant under the curve of y = e–x.

(A) 1 (B) e (C) (D) 2 (E) none of these

37. In the first quadrant under the curve of .

(A) 2 (B) (C) (D) (E) none of these

38. In the first quadrant above y = 1, between by the y-axis and the curve xy = 1.

(A) 1 (B) 2 (C) (D) 4 (E) none of these

39. Between the curve y = and the x-axis.

(A) 2U (B) 4U (C) 8U (D) U (E) none of these

40. Above the x-axis, between the curve y = and its asymptotes.

(A) (B) U (C) 2U (D) 4U (E) none of these

In Questions 41 and 42, choose the alternative that gives the volume, if it exists, of
the solid generated.

41. y = , at the left by x = 1, and below by y = 0; about the x-axis.

(A) (B) U (C) 2U (D) 4U (E) none of these

42. The first-quadrant region under y = e–x; about the x-axis.

(A) (B) U (C) 2U (D) 4U (E) none of these
π
2

π
2

1
x

π
2

4

1 2− x

4
1 2+ x

1
2

1
2e

1
2

2
e

y xe x= − 2

1
e
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Applications of Integration to Geometry 323

Part B. Directions: Some of the following questions require the use of a graphing 
calculator.

AREA
In Questions 43–47, choose the alternative that gives the area of the region whose

boundaries are given.

43. The area bounded by the parabola y = 2 – x2 and the line y = x – 4 is given by

(A) (6 – x – x2) dx (B) (2 + x + x2) dx (C) (6 – x – x2) dx

(D) 2 (2 – x2) dx + (4 – x) dx (E) none of these

44. The area enclosed by the hypocycloid with parametric equations x = cos3 t and 
y = sin3 t as shown in the above diagram is

(A) 3 sin4 t cos2 t dt (B) 4 sin3 t dt (C) –4 sin6 t dt

(D) 12 sin4 t cos2 t dt (E) none of these

45. Suppose the following is a table of ordinates for y = f(x), given that f is continuous
on [1, 5]:

x 1 2 3 4 5
y 1.62 4.15 7.5 9.0 12.13

If a trapezoid sum in used, with n = 4, then the area under the curve, from x = 1 to
x = 5, is equal, to two decimal places, to

(A) 6.88 (B) 13.76 (C) 20.30 (D) 25.73 (E) 27.53

 !0

2π

 
!

π 2

0

 !0

1

 
!

π 2

0

y

x

(0,1)

(1,0)

 !−3

2

 !0

2

 !−3

2

 !−2

1

 !−2

3
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324 AP Calculus

46. The area A enclosed by the four-leaved rose r = cos 2q equals, to three decimal
places,

(A) 0.785 (B) 1.571 (C) 2.071 (D) 3.142 (E) 6.283

47. The area bounded by the small loop of the limaçon r = 1 – 2 sin q is given by the
definite integral

(A)

(B) (1 – 2 sin q)2 dq

(C) (1 – 2 sin q)2 dq

(D) + 

(E) (1 – 2 sin q)2 dq

VOLUME
In Questions 48–54 the region whose boundaries are given is rotated about the line

indicated. Choose the alternative that gives the volume of the solid generated.

48. y = x2 and y = 4; about the line y = –1.

(A) 4U (y + 1) dy (B) 2U (4 – x2)2 dx (C) U (16 – x4) dx

(D) 2U (24 – 2x2 – x4) dx (E) none of these

49. y = 3x – x2 and y = 0; about the x-axis.

(A) U (9x2 + x4) dx (B) U (3x – x2)2 dx (C) U (3x – x2) dx

(D) 2U y (E) U y2 dy

50. y = 3x – x2 and y = x; about the x-axis.

(A) U [(3x – x2)2 – x2] dx (B) U (9x2 – 6x3) dx

(C) U [(3x – x2)2 – x2] dx (D) U [(3x – x2)2 – x4] dx

(E) U (2x – x2)2 dx
 !0

3

 !0

3

 !0

2

 !0

2

 !0

3 2

 !0

9 4

9 4− y dy
 !0

3
 !0

3

 !0

3

 !0

3

 !0

2
 !−2

2

 !0

2

y
 !−1

4

 !0

3π

1
2

1 2
2

( sin )−





θ θd
 
!

5 6π

π1
2

1 2
2

( sin )−





θ θd
 !0

6π

 
!

π

π

6

2

 
!

7 6

3 2

π

π

1
2

1 2
2

( sin )−





θ θd
 
!

π

π

3

5 3
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Applications of Integration to Geometry 325

51. y = ln x, y = 0, x = e; about the line x = e.

(A) U (e – x) ln x dx (B) U (e – ey)2 dy (C) 2U (e – ln x) dx

(D) U (e2 – 2ey+1 + e2y) dy (E) none of these

52. The curve with parametric equations x = tan q, y = cos2 q, and the lines x = 0, 
x = 1, and y = 0; about the x-axis.

(A) U cos4 q dq (B) U cos2 q sin q dq (C) U cos2 q dq

(D) U cos2 q dq (E) U cos4 q dq

53. A sphere of radius r is divided into two parts by a plane at distance h (0 < h < r)
from the center. The volume of the smaller part equals

(A) (B) (C)

(D) (E) none of these

54. If the curves of f(x) and g(x) intersect for x = a and x = b and if f(x) > g(x) > 0 for
all x on (a, b), then the volume obtained when the region bounded by the curves is
rotated about the x-axis is equal to

(A) U f 2(x) dx – g2(x) dx

(B) U [f(x) – g(x)]2 dx

(C) 2U x[f(x) – g(x)] dx

(D) U [f 2(x) – g2(x)] dx

(E) none of these

ARC LENGTH

55. The length of one arch of the cycloid equals

(A) (B) (C)

(D) (E) 2
1

2
− cos t

dt
 !0

π

2 2− cos t dt
 !0

2 π

2 2− cos t dt
 !0

π1
2

− cos t
dt

 !0

2 π

1 − cos t dt
 !0

π

y t
x t t

= −
= −

1 cos
sin

 !a

b
 !a

b
 !a

b
 !a

b

 !a

b

π + −
3

2 33 2 3( )r r h h

4
3 3

3
3

2π + −r
h

r h
π −h

r h
3

3 2 2( )
π + −
3

2 33 3 2( )r h r h

 !0

1

 !0

1
 !0

4π

 !0

4π

 !0

4π

 !0

e
 !1

e

 !0

1

 !1

e

BC ONLY
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326 AP Calculus

56. The length of the arc of the parabola 4x = y2 cut off by the line x = 2 is given by
the integral

(A) (B) (C)

(D) (E) none of these

57. The length of x = et cos t, y = et sin t from t = 2 to t = 3 is equal to

(A) (B) (C)

(D) (E) none of these

IMPROPER INTEGRALS

58. Which one of the following is an improper integral?

(A) (B) (C)

(D) (E) none of these

59. Which one of the following improper integrals diverges?

(A) (B) (C)

(D) (E) none of these

60. Which one of the following improper integrals diverges?

(A) (B) (C)

(D) (E)
dx
x1 3 !1

∞dx
ex + 2 !0

∞

dx
x3 1+ !0

∞
dx
x1 3 !0

1dx
x1 2+ !0

∞

dx
x2 !−1

1

dx
x3 !−1

1dx
ex !0

∞dx
x2 !1

∞

sin
cos

x dx
x2

 !0

3π

x dx
x1 2− !0

2dx
x1 2+ !−1

1dx
x + 1 !0

2

e e3 23 3 2 2(cos sin ) (cos sin )+ − +

2 3 2( )e e−2 3 2( )e e−2 12 2e e −

4 2+ y dy
 !0

2 2

1 + x dx
 !−1

1

4 2+ y dy
 !0

21
2

x dx2 1+
 !−1

1
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Answer Key
1. C 14. A 27. E 40. D 53. A
2. C 15. B 28. C 41. B 54. D
3. A 16. B 29. A 42. A 55. D
4. D 17. C 30. A 43. C 56. D
5. D 18. E 31. E 44. D 57. B
6. C 19. D 32. B 45. E 58. C
7. E 20. A 33. A 46. B 59. D
8. A 21. C 34. E 47. C 60. E
9. A 22. D 35. C 48. D

10. D 23. B 36. A 49. B
11. D 24. A 37. C 50. C
12. C 25. D 38. E 51. B
13. D 26. B 39. B 52. C

Answers Explained
AREA
We give below, for each of Questions 1–17, a sketch of the region, and indicate a typical
element of area. The area of the region is given by the definite integral. We exploit sym-
metry wherever possible.

1. (C)

x

y

(–1,0) (2,0)∆ x

2

–1

x2

(2,4)

x2 dx = 3!
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2. (C)

3. (A)

4. (D)

1

–2

9
2

(2 – y – y2) dy =

x

y

2 – y – y2

∆ y

(4,–2)

(1,1)

!

x

y

1

0

0

–1
(1 – y 2) dy = 2 4

3
= 2 x + 1 dx 

1–y2

(0,1)

(0,–1)

∆ y

∆ x

x

y

(0,1)

(0,–1)

(–1,0)
x + 12

OR

!!

x

y

2

0

(4 – x2) dx = 2 32
3

1

–3
 2 32

3
3 + y dy =

(0,1)(–2,1) (2,1)

(0,–3)

∆ x

OR

4–x2

x

y

(0,1)

(0,–3)

3 + y2

∆ y

! !

328 AP Calculus

7_3679_APCalc_14Chapter7B   10/3/08  4:28 PM  Page 328



5. (D)

6. (C)

7. (E)

x

y

(2,1)

(1,2)

∆ x

∆ y

x

y

(2,1)

(1,2)

3 – x – 2
x

3 – y – 2
yOR

2

1

2

1

(3 – x –  – ln 4 = 2
x

3
2

) (3 – y – 2
y ) dydx =! !

x

y

(0,0)

(–4,4)

8y – 2y2

∆ y

4

0

(8y – 2y2) dy = 64
3!

2

0

2
x2 + 4

4 dx = π

x

y

∆ x (2,0)(–2,0)

4
x2 + 4

!
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330 AP Calculus

8. (A)

9. (A)

10. (D)

cot  dx = ln 21
2

x

y

∆ xπ ,04( ) π ,02( )

cot x

π/2

π/4
! ln sin x

π/2

π/4
=

5π/4

π/4

(sin x – cos x) dx = 2 2

x

y

∆ x

sin x – cos x

π
4

, 2
2

π
4
5 , 2

2
( )

( )

π

!

(0,1)

(0,0) ∆ x ∆ x
x

y

π/4

0

π/2

π/4

sin x cos x

π
4

,0)( π
2

,0)(

sin x dx + cos x dx = 2 – 2 ! !

7_3679_APCalc_14Chapter7B   10/3/08  4:28 PM  Page 330



Applications of Integration to Geometry 331

11. (D)

12. (C)

13. (D)

(ln2,2)

(0,1)

y = ex

y = 2

x

∆x

x

y
4y–y3

∆ y

(6,2)

(–6,–2)

2

0

2 (4y – y3) dy = 8!

(x3 – 2x2 – 3x) dx – (x3 – 2x2 – 3x) dx =
0

–1

3

0

71
6

x

y

x3 – 2 x2 – 3x

(–1,0)

(0,0) (3,0)

∆ x
∆ x

– (x3 – 2x2 – 3x)

!!

2 2

2 2 2 0

0

2

0

2

2

−( ) = −( )
= −( ) − ⋅ −

∫ e dx x e

e e

x xln ln

lnln 00

2 2 1

( )
= −ln
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14. (A)

15. (B)

16. (B)

x

y

(1,0)

∆ x  x–x2 2

1

0

x – x2 dx2!

x

y

(0,0) (2π,0)

1 – cos θ

∆ x

θ = 2π

θ = 0
y dx =

2π

0

(1 – cos θ)(1 – cos θ) dθ = 3π

!

!

x

y

∆ x (2,0)

(0,3)

3 sin θ

2

0

4 y dx = 

0

π/ 2

4 3 sin θ( – 2 sin θ) dθ = 6π

!

!
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Applications of Integration to Geometry 333

17. (C)

VOLUME
A sketch is given below, for each of Questions 18–27, in addition to the definite integral
for each volume.

18. (E)

x

y

0 (2,0)

y

∆ x

About the x-axis.
Disk.
∆V = π y2 ∆x = πx4 ∆ x.

π x4 dx = 
2

0

32π
5(x,y) !

x

y

c3 – x3

(c,0)(0,0)0

∆ x

c

0

(c3 – x3) dx =      c4; thus area of rectangle is to

area of shaded region as 4 is to 3.

3
4!
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19. (D)

20. (A)

21. (C)

x

y

0

About the x-axis.
Washer.
∆V = π · 42 ∆ x – π y2 ∆ x
      = π(16 – x4) ∆ x.

2

0

2π (16 – x4) dx = 256π
5

(2,4)
(x,4)

(x,y)

∆ x

!

x

y

0

∆ y (x,y)

About the y-axis.
Disk.
∆V = πx2 ∆y
      = πy ∆y.

0

π y dy = 8π
4

(2,4)

!

x

y

0 (2,0)

(2,y)∆y

About the y-axis.
Washer.

V = π · 22 ∆y – πx2 ∆ y
    = π(4 – y) ∆y.

(4 – y) dy = 8π π
4

0x

2

(x,y)

(2,4)

!
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22. (D)

23. (B)

24. (A)

x

y

0

2

4
π x2 dx =

About the x-axis.
Disk.
ΔV = πy2 Δx

 

(x,y)

Δx

(4,0)(2,0)

(2,2)

(4,4)

56π
3!

x

y

0

About the x-axis.
Disk.
∆V = πy2 ∆ x
      = π sin2 x ∆ x.
 

π

0

π sin2 x  dx =   π
2

2
(x,y)

∆ x (π,0)

!

x

y

0

About  y = 4.
Disk.
∆V = π(4 – y)2 ∆ x
      = π(4 – x2)2 ∆ x.
 

2

0

2π (4 – x2)2 dx =

(x,4)

(x,y)

∆ x
4 – y

512π
15!
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25. (D)

26. (B)

27. (E)

0 1

(x,y)

∆ x

y

x

1

0

(e–x)2 dx = 1 1 – 2
1
e2

( )!

y

x

0

(x,y)

∆V = x2 

0

4
8 y dy = 64 

∆y

3 ∆y = 8 3 y ∆y.

3 3

(0,4)

!

x

y

0

∆V = (2y)2 ∆x
      = 4(a2 – x2) ∆x.

 

0

a

8 (a2 – x2) dx =  16a3

3

(a,0)

(x,y)

∆x !

7_3679_APCalc_14Chapter7B   10/3/08  4:28 PM  Page 336



Applications of Integration to Geometry 337

ARC LENGTH

28. (C) Note that the curve is symmetric to the x-axis. The arc length equals 

2 .

29. (A) Integrate . Replace the integrand by sec x, and use 

formula (13) on page 216 to get .

IMPROPER INTEGRALS

30. (A) The integral equals = – (0 – 1).

31. (E) (ln e – ln h). So the integral

diverges to infinity.

32. (B) Redefine as (t – 1)–1/3 dt.

33. (A) Rewrite as (x – 3)–2/3 dx + (x – 3)–2/3 dx. Each integral 

converges to 3.

34. (E) = + . Neither of the latter integrals

converges; therefore the original integral diverges.

35. (C) Evaluate .

36. (A)

x

y

∞

0

∆ x

e–x

e–x dx = 1!

  
0

k

2 1 − cos xlim
( / )k→ −π 2

dx
x( )− 3 2

 !3

4dx
x( )− 3 2

 !2

3dx
x( )− 3 2

 !2

4

   
!

m

4

lim
m→ +3   

!
2

k

lim
k→ −3

   
!

k

2

lim
k→ +1

=
→ +
lim
h 0h

e

ln u=
→ +
lim
h 0

du
u !h

e

=
→ +
lim
h 0

du
u !0

e

0

b
− 1

exlim
b→ ∞

π

π

4

3

ln sec tanx x+

1 2+ tan x dx
 
!

π

π

4

3

1
9
4

+ x dx
 !0

4
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37. (C)

38. (E)

39. (B)

338 AP Calculus
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40. (D)

41. (B)

∆ x(1,0)
x

y

0

∞

1
dx = π

(x,y)

About the x-axis.
Disk.
∆V = πy2 ∆ x = π

x2

π
x2

∆ x.

!

x

y

1 – x2

1

0

∆ x

4

2
1 – x2

4 dx = 4π

(1,0)(–1,0)

(0,4)

!
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42. (A)

AREA

43. (C)

44. (D) 1

0

y dx =4

0

π/2

sin3 t( – 3 cos2 t · sin t) dt4

x

y

(0,1)

(1,0)

sin3 t 

∆ x

!

!

x

y

(2,–2)

(–3,–7)

(6–x–x2)

∆ x

2

–3

(6 – x – x2) dx!
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45. (E) .

46. (B) A = 8 cos2 2q dq = 1.571, using a graphing calculator.

47. (C) The small loop is generated as q varies from to . (C) uses the loop’s

symmetry.

VOLUME

48. (D)

49. (B)

x

y

0 ∆ x

(x,y)

(3,0)

About the x-axis.
Disk.
∆V = πy2 ∆ x
      = π(3x – x2)2 ∆ x.
 

3

0

π (3x – x2 )2 dx !

x

y

0

About  y = –1.
Washer.
∆V = π · 52 ∆ x – π(1 + y)2 ∆ x
      = π[25 – (1 + y)2] ∆ x.
 

2

0

2π (24 – 2x2 – x4) dx

(2,4)(x,4)

(x,y)

∆ x

1 + y

5 !

–1

5
6
ππ

6

1
2 !0

4π

T ( ) . ( . ) ( . ) ( . ) .4 1
4

1 62 2 4 15 2 7 5 2 9 0 12 13= + + + +( )
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50. (C)

51. (B)

52. (C)

0 0

1
π

π/4
y2 dx = π cos2 θ dθ

About the x-axis.
Disk.
ΔV = πy2 Δx.

 

x

y

0 Δx (1,0)

(x,y)

! !

x

y

0

About x = e.
Disk.
ΔV = π(e – x)2 Δy
      = π(e – ey)2 Δy.

 

0

1
π (e – ey)2 dy

(x,y)

(1,0) (e,0)

(e,1)

e–x

!

x

y

0

∆ x

About the x-axis.
Washer.
∆V = πy2 ∆ x – πy2 ∆ x       
      = π [(3x – x2 )2 – x2] ∆ x.
 

2

0

π [(3x – x)2 – x2] dx 

2 1

(x,y2)

(x,y1)

(2,2)

!
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53. (A)

54. (D)

ARC LENGTH

55. (D) From (3) on page 305, we obtain the length:

.

56. (D) Note that the curve is symmetric to the x-axis. Use (2) on page 305.

57. (B) Use (3) on page 305 to get the integral:

.
2

3

( sin cos ) ( cos sin )− + + + =e t e t e t e t dt et t t t t2 2 2 !2

3

2 2− cos t dt
 !0

2 π

( cos ) (sin )1 2 2− + =t t dt
 !0

2 π

x

y

0 ∆ x

(x,g (x))

(x, f(x))

x

(a,0) (b,0)

About the x-axis.
Washer.
∆V = πf 2(x) ∆x – πg2(x) ∆x
      = π[ f 2(x) – g2(x)] ∆x.
 

a

b
π [ f 2(x) – g2(x)] dx!

x

y

0

About the y-axis.
Disk.
∆V = πx2 ∆y
      = π(r2 – y2) ∆y.

 
π (r2 – y2) dy = (2r3 + h3 – 3r2h) 

(x,y)∆y

(r,0)

(0,r)

h

 π
3

h

r

!
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IMPROPER INTEGRALS

58. (C) The integrand is discontinuous at x = 1, which is on the interval of integration.

59. (D) The integral in (D) is the sum of two integrals from –1 to 0 and from 0 to
1. Both diverge (see Example 29, pages 312 and 313). Note that (A), (B),
and (C) all converge.

60. (E) Choices (A), (C), and (D) can be shown convergent by the Comparison
Test; the convergence of (B) is shown in Example 24, page 311. 
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345

A. MOTION ALONG A STRAIGHT LINE
If the motion of a particle P along a straight line is given by the equation s = F(t), where
s is the distance at time t of P from a fixed point on the line, then the velocity and accel-
eration of P at time t are given respectively by

.

This topic was discussed as an application of differentiation on page 179. Here we will
apply integration to find velocity from acceleration and distance from velocity.

If we know that particle P has velocity v(t), where v is a continuous function, then
the distance traveled by the particle during the time interval from t = a to t = b is the def-
inite integral of its speed:

. (1)

If v(t) ! 0 for all t on [a, b] (i.e., P moves only in the positive direction), then (1) is equiva-

lent to v(t) dt; similarly, if v(t) " 0 on [a, b] (P moves only in the negative direction),

then (1) yields – v(t) dt. If v(t) changes sign on [a, b] (i.e., the direction of motion

changes), then (1) gives the total distance traveled. Suppose, for example, that the situa-
tion is as follows:

a " t " c v(t) ! 0;
c " t " d v(t) " 0;
d " t " b v(t) ! 0.

 !a

b
 !a

b

v t dt( )
 !a

b

v
ds
dt

a
dv
dt

d s
dt

= = =    and    
2

2

Further Applications
of Integration

CHAPTER8

Concepts and Skills
In this chapter, we will review many ways that definite integrals can be used to solve
a variety of problems, notably distance traveled by an object in motion along a line.
We’ll see that in a variety of settings accumulated change can be expressed as a
Riemann sum whose limit becomes an integral of the rate of change.

For BC students, we’ll expand our discussion of motion to include objects in
motion in a plane along a parametrically defined curve.

Distance
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346 AP Calculus

Then the total distance traveled during the time interval from t = a to t = b is exactly

v(t) dt – v(t) dt + v(t) dt.

The displacement or net change in the particle’s position from t = a to t = b is equal,
by the Fundamental Theorem of Calculus (FTC), to

v(t) dt.

EXAMPLE 1
If a body moves along a straight line with velocity v = t3 + 3t2, then the distance
traveled between t = 1 and t = 4 is given by

.

Note that v > 0 for all t on [1, 4].

EXAMPLE 2
A particle moves along the x-axis so that its velocity at time t is given by 
v(t) = 6t2 – 18t + 12. 
(a) Find the total distance covered between t = 0 and t = 4. 
(b) Find the displacement of the particle from t = 0 to t = 4.

(a) Since v(t) = 6t2 – 18t + 12 = 6(t – 1)(t – 2), we see that:
if t < 1, then v > 0;
if 1 < t < 2, then v < 0;
if 2 < t, then v > 0.

Thus, the total distance covered between t = 0 and t = 4 is

v(t) dt – v(t) dt + v(t) dt. (2)

When we replace v(t) by 6t2 – 18t + 12 in (2) and evaluate, we obtain 34
units for the total distance covered between t = 0 and t = 4. This can also be veri-
fied on your calculator by evaluating

.

This example is the same as Example 26 on page 179, in which the required dis-
tance is computed by another method.

(b) To find the displacement of the particle from t = 0 to t = 4, we use the
FTC, evaluating

v(t) dt = (6t2 – 18t + 12) dt.

= (2t3 – 9t2 + 12t) = 128 – 144 + 48 = 32. 

This is the net change in position from t = 0 to t = 4, sometimes referred to
as “position shift.” Here it indicates the particle ended up 32 units to the right of
its starting point.

0

4

 !0

4

 !0

4

v t dt( )
 !0

4

 !2

4

 !1

2

 !0

1

= 507
41

4

( )t t dt
t

t3 2
4

33
4

+ = +



 !1

4

 !a

b

 !d

b

 !c

d

 !a

c

Displacement
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EXAMPLE 3
The acceleration of an object moving on a line is given at time t by a = sin t; 
when t = 0 the object is at rest. Find the distance s it travels from t = 0 to 

t = .

Since a = = sin t, it follows that

v(t) = = !sin t dt; v(t) = – cos t + C.

Also, v(0) = 0 yields C = 1. Thus v(t) = 1 – cos t; and since cos t " 1 for all t we
see that v(t) ! 0 for all t. Thus, the distance traveled is

(1 – cos t) dt = (t – sin t) = .

B. MOTION ALONG A PLANE CURVE
In Chapter 4, §K, it was pointed out that, if the motion of a particle P along a curve

is given parametrically by the equations x = x(t) and y = y(t), then at time t the position
vector R, the velocity vector v, and the acceleration vector a are:

R = xi + yj;

.

The components in the horizontal and vertical directions of R, v, and a are given respec-

tively by the coefficients of i and j in the corresponding vector. The slope of v is ; its 
magnitude,

,

is the speed of the particle, and the velocity vector is tangent to the path. The slope of a is 

. The distance the particle travels from time t1 to t2, is given by

.

How integration may be used to solve problems of curvilinear motion is illustrated
in the following examples.

v dt dx
dt

dy
dt

dt
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=
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EXAMPLE 4
Suppose a projectile is launched from the origin at an angle of elevation a and
initial velocity v0. Find the parametric equations for its flight path.

We have the following initial conditions:

Position: x(0) = 0; y(0) = 0.

Velocity: (0) = v0 cos a; (0) = v0 sin a

We start with equations representing acceleration due to gravity and integrate
each twice, determining the constants as shown:

Acceleration: ;

;

v0 sin a = C2;

x = (v0 cos a)t + C3; y = gt2 + (v0 sin a)t + C4;

x(0) = 0 yields C3 = 0. y(0) = 0 yields C4 = 0.

Finally, then, 
x = (v0 cos a)t; y = gt2 + (v0 sin a)t.

If desired, t can be eliminated from this pair of equations to yield a parabola in
rectangular coordinates.

EXAMPLE 5
A particle P(x, y) moves along a curve so that

and at any time t ! 0.

At t = 0, x = 1 and y = 0. Find the parametric equations of motion.

Since = 2 dt, we integrate to get = 2t + C, and use x(0) = 1 to find 

that C = 2. Therefore, = t + 1 and
x = (t + 1)2. (1)

Then by (1), so dy = and

. (2)

Since y(0) = 0, this yields C# = 1, and so (2) becomes

.

Thus the parametric equations are

x = (t + 1)2 and y
t

t
=

+ 1
.

y
t

t
t

= −
+

=
+

1
1

1 1

y
t

C= −
+

+ ′1
1

dt
t( )+ 1 2

dy
dt x t

= =
+

1 1
1 2( )

x

2 xdx
x

dy
dt x

= 1dx
dt

x= 2

− 1
2

− 1
2

dy
dt

gt C= − + 2 ;
dx
dt

C v= =1 0 cos α

d x
dt

d y
dt

g
2

2

2

20= = −;

dy
dt

dx
dt
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EXAMPLE 6
The particle in Example 5 is in motion for 1 second, 0 ≤ t ≤ 1. Find its position,
velocity, speed, and acceleration at t = 1 and the distance it traveled. 

In Example 5 we derived the result P(t) = , the parametric 

representation of the particle’s position. Hence its position at t = 1 is P(1) = .

From P(t) we write the velocity vector:

Hence, at t = 1 the particle’s velocity is v = 4i + j.

Speed is the magnitude of the velocity vector, so after 1 second the particle’s
speed is 

units/sec.

The particle’s acceleration vector at t = 1 is 

On the interval 0 ≤ t ≤ 1 the distance traveled by the particle is 

units.

EXAMPLE 7
A particle P(x, y) moves along a curve so that its acceleration is given by

;

when t = 0, the particle is at (1, 0) with = 0 and = 2. (a) Find the position 

vector R at any time t. (b) Find a Cartesian equation for the path of the particle,
and identify the conic on which P moves.

(a) v = (–2 sin 2t + c1)i + (2 cos t + c2)j, and since v = 2j when t = 0, it 
follows that c1 = c2 = 0. So v = –2 sin 2ti + 2 cos tj. Also R = (cos 2t + c3)i + 
(2 sin t + c4)j; and since R = i when t = 0, we see that c3 = c4 = 0. Finally, then,

R = cos 2ti + 2 sin tj.

dy
dt

dx
dt

 
a i j= − − − π π
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(b) From (a) the parametric equations of motion are

x = cos 2t, y = 2 sin t.

By a trigonometric identity,

x = 1 – 2 sin2 t = 1 – .

P travels in a counterclockwise direction along part of a parabola that has its ver-
tex at (1, 0) and opens to the left. The path of the particle is sketched in Figure
N8–1; note that –1 $ x $ 1, –2 $ y $ 2.

FIGURE N8–1

C. OTHER APPLICATIONS OF RIEMANN SUMS
We will continue to set up Riemann sums to calculate a variety of quantities using defi-
nite integrals. In many of these examples, we will partition into n equal subintervals a
given interval (or region or ring or solid or the like), approximate the quantity over each
small subinterval (and assume it is constant there), then add up all these small quantities.
Finally, as n Æ h, we will replace the sum by its equivalent definite integral to calculate
the desired quantity.

x

y

0

(–1,–2)

t = –

(1,0)
t = 0

π
2

(–1,2)

t = π
2

x = cos 2t
y = 2 sin t

y2

2
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EXAMPLE 8
Amount of Leaking Water. Water is draining from a cylindrical pipe of radius 2
inches. At t seconds the water is flowing out with velocity v(t) inches per second.
Express the amount of water that has drained from the pipe in the first 3 minutes
as a definite integral in terms of v(t).

We first express 3 min as 180 sec. We then partition [0,180] into n subinter-
vals each of length )t. In )t sec, approximately v(t) )t in. of water have drained
from the pipe. Since a typical cross section has area 4U in.2 (Figure N8-2), in )t
sec the amount that has drained is

(4U in.2) (v(t) in./sec)()t sec) = 4Uv(t) )t in.3.

The sum of the n amounts of water that drain from the pipe, as n Æ h, is 

4Uv(t) dt; the units are cubic inches (in.3).

FIGURE N8–2

EXAMPLE 9
Traffic: Total Number of Cars. The density of cars (the number of cars per
mile) on 10 miles of the highway approaching Disney World is equal approxi-
mately to f(x) = 200[4 – ln (2x + 3)], where x is the distance in miles from the
Disney World entrance. Find the total number of cars on this 10-mile stretch.

Partition the interval [0, 10] into n equal subintervals each of width )x. In
each subinterval the number of cars equals approximately the density of cars f (x)
times )x, where f(x) = 200[4 – ln (2x + 3)]. When we add n of these products we
get , which is a Riemann sum. As n Æ h (or as )x Æ 0), the Riemann
sum approaches the definite integral

[200(4 – ln (2x + 3)] dx,

which, using our calculator, is approximately equal to 3118 cars.

 !0

10

f x x( ) ∆∑

Area = 4π in.2

Height = v (t) ∆t in.

!
0

180
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EXAMPLE 10
Resource Depletion. In 2000 the yearly world petroleum consumption was
about 77 billion barrels and the yearly exponential rate of increase in use was
2%. How many years after 2000 are the world’s total estimated oil reserves of
1020 billion barrels likely to last?

Given the yearly consumption in 2000 and the projected exponential rate of
increase in consumption, the anticipated consumption during the )tth part of a year
(after 2000) is 77e0.02t )t billion barrels. The total to be used during the following N

years is therefore 77e0.02t dt. This integral must equal 1020 billion barrels.

We must now solve this equation for N. We get

3850e0.02t = 1020,

3850(e0.02N – 1) = 1020,

e0.02N – 1 = ,

e0.02N = 1 + ,

0.02N = ln ,

N = " 11.75 yr.

Either more oil (or alternative sources of energy) must be found, or the world
consumption must be sharply reduced.

D. FTC: DEFINITE INTEGRAL OF A RATE IS NET CHANGE

If f is continuous and f(t) = , then we know from the FTC that

f(t) dt = F(b) – F(a).

The definite integral of the rate of change of a quantity over an interval is the net 
change or net accumulation of the quantity over that interval. Thus, F(b) – F(a) is the net
change in F(t) as t varies from a to b.

We’ve already illustrated this principle many times. Here are more examples.

 !a

b

dF
dt

1
0 02

1 102
385.

ln +( )
1 102

385
+( )
102
385

1020
3850

0

N

 !0

N
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EXAMPLE 11
Let G(t) be the rate of growth of a population at time t. Then the  increase in pop-

ulation between times t = a and t = b is given by G(t) dt. The population may

consist of people, deer, fruit flies, bacteria, and so on.

EXAMPLE 12
Suppose a rumor is spreading at the rate of f(t) = 100e–0.2t new people per day.
Then the number of people who hear the rumor during the 5th and 6th days is

100e–0.2t dt

or 74 people. If we let F#(t) = f(t), then the integral above is the net change in
F(t) from t = 4 to t = 6, or the number of people who hear the rumor from the
beginning of the 5th day to the end of the 6th.

EXAMPLE 13
Economists define the marginal cost of production as the additional cost of pro-
ducing one additional unit at a specified production level. It can be shown that if
C(x) is the cost at production level x then C#(x) is the marginal cost at that pro-
duction level.

If the marginal cost, in dollars, is per unit when x units are being pro-

duced, then the change in cost when production increases from 50 to 75 units is

" $0.41.

We replace “cost” above by “revenue” or “profit” to find total change in
these quantities.

EXAMPLE 14
If after t minutes a chemical is decomposing at the rate of 10e–t grams per
minute, then during the first 3 minutes the amount that has decomposed is

10e–t dt " 9.5 g.
 !0

3

1
x

dx
 !50

75

1
x

!
4

6

 !a

b
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EXAMPLE 15
An official of the Environmental Protection Agency estimates that t years from
now the level of a particular pollutant in the air will be increasing at the rate of
(0.3 + 0.4t) parts per million per year (ppm/yr). According to this estimate, the
change in the pollutant level during the second year will be

(0.3 + 0.4t) dt " 0.9 ppm.

EXAMPLE 16
Suppose an epidemic is spreading through a city at the rate of f(t) new people
per week. Then

f(t) dt

is the number of people who will become infected during the next 4 weeks (or
the total change in the number of infected people).

Work†

Work is defined as force times distance: W = F ¥ d. When a variable force F(x) moves an
object along the x-axis from a to b, we approximate an element of work done by the
force over a short distance )x by

)W = F(xk) )x,

where F(xk) is the force acting at some point in the kth subinterval. We then use the FTC to get

F(x) dx.

If the force is given in pounds and the distance in feet, then the work is given in foot-
pounds (ft-lb). Problems typical of those involving computation of work are given in the
following examples.

EXAMPLE 17
Find the work done by a force F, in pounds, that moves a particle along the x-axis

from x = 4 feet to x = 9 feet, if F(x) = .

For the work, W, we have

W = = 3 – 2 = 1 ft-lb.
4

9dx
x

x
2

=
 !4

9

1
2 x

 !a

b

W F x x
n k

k

n

= ∆ =
→ ∞

=
∑lim ( )

0

 !0

4

 !1

2

†The topic “work” is not specifically included in the Topical Outline, but it is an important application of integration.
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EXAMPLE 18
A cylindrical reservoir of diameter 4 feet
and height 6 feet is half-full of water weigh-
ing w pounds per cubic foot (Figure N8–3).
Find the work done in emptying the water
over the top.

The volume of a slice of water is )V = 
Ux2 )y, where x = 2. A slice at height y is
lifted (6 – y) ft.

W = w • U • 4)y(6 – y);

W = 4Uw (6 – y) dy = 54Uw ft-lb.

We used 3 as the upper limit since the reser-
voir is only half full.

EXAMPLE 19
A hemispherical tank with flat side up has radius 4 feet and is filled with a liquid
weighing w pounds per cubic foot. Find the work done in pumping all the liquid
just to the top of the tank.

In Figure N8–4, the generating circle has equation x2 + y2 = 16. Note that
over the interval of integration y is negative, and that a slice must be lifted a dis-
tance of (–y) feet. Then for the work, W, we have

W = Uw (–y)x2 dy = –Uw y(16 – y2) dy = 64Uw ft-lb.
 !−4

0

 !−4

0

FIGURE N8–4

x

y

0

(x,y)∆y

(0,–4)

FIGURE N8–3
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y
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6

2

3

 !0

3
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Chapter Summary
In this chapter we have reviewed how to find the distance traveled by an object in motion
along a line and (for BC students) along a parametrically defined curve in a plane. We’ve
also looked at a broad variety of applications of the definite integral to other situations
where definite integrals of rates of change are used to determine accumulated change,
using limits of Riemann sums to create the integrals required. 

Practice Exercises
The aim of these questions is mainly to reinforce how to set up definite integrals, rather
than how to integrate or evaluate them. Therefore we encourage using a graphing calcu-
lator wherever helpful.

1. A particle moves along a line in such a way that its position at time t is given by 
s = t3 - 6t2 + 9t + 3. Its direction of motion changes when

(A) t = 1 only (B) t = 2 only (C) t = 3 only
(D) t = 1 and t = 3 (E) t = 1, 2, and 3

2. A body moves along a straight line so that its velocity v at time t is given by 
v = 4t3 + 3t2 + 5. The distance the body covers from t = 0 to t = 2 equals

(A) 34 (B) 55 (C) 24 (D) 44 (E) none of these

3. A particle moves along a line with velocity v = 3t2 – 6t. The total distance traveled
from t = 0 to t = 3 equals

(A) 9 (B) 4 (C) 2 (D) 16 (E) none of these

4. The net change in the position of the particle in Question 3 is

(A) 2 (B) 4 (C) 9 (D) 16 (E) none of these

5. The acceleration of a particle moving on a straight line is given by a = cos t, and
when t = 0 the particle is at rest. The distance it covers from t = 0 to t = 2 is

(A) sin 2 (B) 1 – cos 2 (C) cos 2 (D) sin 2 – 1 (E) –cos 2

6. During the worst 4-hr period of a hurricane the wind velocity, in miles per hour, is
given by v(t) = 5t – t2 + 100, 0 ! t ! 4. The average wind velocity during this
period (in mph) is

(A) 10 (B) 100 (C) 102 (D) 104 (E) 108

7. A car accelerates from 0 to 60 mph in 10 sec, with constant acceleration. (Note
that 60 mph = 88 ft/sec.) The acceleration (in ft/sec2) is

(A) 5.3 (B) 6 (C) 8 (D) 8.8 (E) none of these

2
3

2
3
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For Questions 8–10 use the following information: The velocity v of a particle moving
on a curve is given, at time t, by v = ti – (1 – t)j. When t = 0, the particle is at point 
(0,1).

8. At time t the position vector R is

(A) (B)

(C) (D)

(E)

9. The acceleration vector at time t = 2 is

(A) i + j (B) i – j (C) i + 2j (D) 2i – j (E) none of these

10. The speed of the particle is at a minimum when t equals

(A) 0 (B) (C) 1 (D) 1.5 (E) 2

11. A particle moves along a curve in such a way that its position vector and velocity
vector are perpendicular at all times. If the particle passes through the point (4, 3),
then the equation of the curve is

(A) x2 + y2 = 5      (B) x2 + y2 = 25      (C) x2 + 2y2 = 34     
(D) x2 – y2 = 7      (E) 2x2 – y2 = 23

12. The acceleration of an object in motion is given by the vector (t) = (2t,et). If the
object’s initial velocity was (0) = (2,0), which is the velocity vector at any time t?

(A) (t) = (t2,et) (B) (t) = (t2,et + 1) (C) (t) = (t2 + 2,et)
(D) (t) = (t2 + 2,et – 1) (E) (t) = (2,et – 1)

13. The velocity of an object is given by (t) = (3 ,4). If this object is at the origin
when t = 1, where was it at t = 0?

(A) (–3,–4) (B) (–2,–4) (C) (2,4)

(D) (E)

14. Suppose the current world population is 6 billion and the population t yr from now
is estimated to be P(t) = 6e0.024t. On the basis of this supposition, the average popu-
lation of the world, in billions, over the next 25 yr will be approximately

(A) 6.75 (B) 7.2 (C) 7.8 (D) 8.2 (E) 9.0

−
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15. If a quantity Q(t) is growing at the rate of 5% per year and Q now equals Q0, then
in t yr Q will equal

(A) Q0(1.05t) (B) Q0(1.05) t (C) Q0e0.05t

(D) Q0e0.045t (E) none of these

16. A beach opens at 8 A.M. and people arrive at a rate of R(t) = 10 + 40t people per
hour, where t represents the number of hours the beach has been open. Assuming
no one leaves before noon, at what time will there be 100 people there?

(A) 9:45 (B) 10:00 (C) 10:15 (D) 10:30 (E) 10:45

17. A stone is thrown upward from the ground with an initial velocity of 96 ft/sec. Its
average velocity (given that a(t) = –32 ft/sec2) during the first 2 sec is

(A) 16 ft/sec (B) 32 ft/sec (C) 64 ft/sec
(D) 80 ft/sec (E) 96 ft/sec

18. Suppose the amount of a drug in a patient’s bloodstream t hr after intravenous
administration is 30/(t + 1)2 mg. The average amount in the bloodstream during 
the first 4 hr is

(A) 6.0 mg (B) 11.0 mg (C) 16.6 mg
(D) 24.0 mg (E) none of these

19. A rumor spreads through a town at the rate of (t2 + 10t) new people per day.
Approximately how many people hear the rumor during the second week after 
it was first heard?

(A) 1535 (B) 1894 (C) 2000
(D) 2219 (E) none of these

20. Oil is leaking from a tanker at the rate of 1000e–0.3t gal/hr, where t is given in 
hours. A general Riemann sum for the amount of oil that leaks out in the next 
8 hr, where the interval [0, 8] has been partitioned into n subintervals, is

(A) (B)

(C) (D)

(E)

21. In Question 20, the total number of gallons of oil that will leak out during the next
8 hr is approximately

(A) 1271 (B) 3031 (C) 3161 (D) 4323 (E) 11,023
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22. Assume that the density of vehicles (number per mile) during morning rush hour,
for the 20-mi stretch along the New York State Thruway southbound from the
Tappan Zee Bridge, is given by f(x), where x is the distance, in miles, south of the
bridge. Which of the following gives the number of vehicles (on this 20-mi
stretch) from the bridge to a point x mi south of the bridge?

(A) f(t) dt (B) (C) f(x) dx

(D)

(E) none of these

23. The center of a city that we will assume is circular is on a straight highway. The
radius of the city is 3 mi. The density of the population, in thousands of people per
square mile, is given approximately by f(r) = 12 – 2r at a distance r mi from the
highway. The population of the city is given by the integral

(A) (12 – 2r) dr (B) 2 (12 – 2r) dr

(C) 4 (12 – 2r) dr (D) 2Ur(12 – 2r) dr

(E) 2 2Ur(12 – 2r) dr

24. The population density of Winnipeg, which is located in the middle of the
Canadian prairie, drops dramatically as distance from the center of town 
increases. This is shown in the following table:

x = distance (in mi)
from the center 0 2 4 6 8 10

f(x) = density (hundreds 
of people/mi2) 50 45 40 30 15 5

Using a Riemann sum, we can calculate the population living within a 10-mi
radius of the center to be approximately

(A) 608,500 (B) 650,000 (C) 691,200
(D) 702,000 (E) 850,000

25. If a factory continuously dumps pollutants into a river at the rate of tons per

day, then the amount dumped after 7 weeks is approximately

(A) 0.07 ton (B) 0.90 ton (C) 1.55 tons
(D) 1.9 tons (E) 1.27 tons

t
180

 !0

3

 !0

3

9 2− r
 !0

3

9 2− r
 !0

3

 !0

3

f x xk
k

n

n( )∆  (where the 20-mi stretch has been partitioned into  equal subintervals)
=

∑
1

 !0

20

f t dt
x

( )∫
20

 !0

x
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26. A roast at 160°F is put into a refrigerator whose temperature is 45°F. The tem-
perature of the roast is cooling at time t at the rate of (–9e–0.08t)°F per minute. 
The temperature, to the nearest degree F, of the roast 20 min after it is put in the
refrigerator is

(A) 45° (B) 70° (C) 81° (D) 90° (E) 115°

27. How long will it take to release 9 tons of pollutant if the rate at which pollutant is
being released is te–0.3t tons per week?

(A) 10.2 weeks (B) 11.0 weeks (C) 12.1 weeks
(D) 12.9 weeks (E) none of these

28. If you deposit $1000 today at 8% interest compounded continuously, it will grow
at the rate of 80e0.08t dollars per year. In 6 years it will be worth (in dollars)

(A) 616.07 (B) 1129.29 (C) 1292.86
(D) 1616.07 (E) 6160.74

29. The average area, in square inches, of all circles with radii between 2 and 5 in. is

(A) 7U (B) 11U (C) 13U (D) (E) 17U

30. What is the exact total area bounded by the curve f(x) = x3 – 4x2 + 3x and the x-axis?

(A) –2.25 (B) 2.25 (C) 3 (D) 3.083 (E) none of these

31. Water is leaking from a tank at the rate of (–0.1t2 – 0.3t + 2) gal/hr. The total
amount, in gallons, that will leak out in the next 3 hr is approximately

(A) 1.00 (B) 2.08 (C) 3.13 (D) 3.48 (E) 3.75

32. A bacterial culture is growing at the rate of 1000e0.03t bacteria in t hr. The total
increase in bacterial population during the second hour is approximately

(A) 46 (B) 956 (C) 1046 (D) 1061 (E) 2046

33. An 18-wheeler traveling at speed v mph gets about (4 + 0.01v) mpg (miles per 

gallon) of diesel fuel. If its speed is mph at time t, then the amount, in 

gallons, of diesel fuel used during the first 2 hr is approximately

(A) 20 (B) 21.5 (C) 23.1 (D) 24 (E) 25

80 1
2

t
t

+
+

29
2

π
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Answer Key
1. D 8. D 15. B 22. A 29. C
2. A 9. A 16. B 23. C 30. D
3. E 10. B 17. C 24. C 31. E
4. E 11. B 18. A 25. E 32. C
5. B 12. D 19. A 26. B 33. C
6. D 13. B 20. D 27. A
7. D 14. D 21. B 28. D

Answers Explained

1. (D) Velocity , and changes sign both when t = 1 and 

when t = 3.

2. (A) Since v > 0 for 0 " t " 2, the distance is equal to (4t3 + 3t2 + 5) dt.

3. (E) The answer is 8. Since the particle reverses direction when t = 2, and v > 0
for t > 2 but v < 0 for t < 2, therefore, the total distance is

– (3t2 – 6t) dt + (3t2 – 6t) dt.

4. (E) (3t2 – 6t) dt = 0, so there is no change in position.

5. (B) Since v = sin t is positive on 0 < t " 2, the distance covered is

sin t dt = 1 – cos 2.

6. (D) Average velocity = (5t – t2 + 100) dt = 104 mph.

7. (D) The velocity v of the car is linear since its acceleration is constant:

8. (D) v = , so R(t) = . Since R(0) = (0,1), 

c1 = 0 and c2 = 1.

9. (A) a = v′(t) = i + j for all t.

10. (B) v = t i + (t – 1)j. ; ; = 0 at t = .1
2

d
dt

vd
dt

tv
v

= −2 1
v = + −t t2 21( )

t c t t c
2

1

2

22 2
+



 + − +



i j

d
dt
R
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= = − = =( )
sec sec

.
60 0
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88
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8 8
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3 !0

41
4 0−
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3

 !2

3

 !0
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 !0
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v t
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t t( ) = = −( ) −( )3 1 3
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362 AP Calculus

11. (B) Since R = xi + yj, its slope is ; since v = , its slope is .

If R is perpendicular to v, then = –1, so

.

Since (4, 3) is on the curve, the equation must be

x2 + y2 = 25.

12. (D) (t) = (t2 + c1,et + c2); since (0) = (2,0), 02 + c1 = 2 and e0 + c2 = 0; hence
c1 = 2 and c2 = –1.

13. (B) The object’s position is given by x(t) = 2t + c1, y(t) = 4t + c2. Since the 

object was at the origin at t =1, 2 · 1 + c1 = 0 and 4 · 1 + c2 = 0, making 

the position x(t) = 2t – 2, y(t) = 4t – 4. When t = 0, x(0) = –2, y(0) = –4.

14. (D) P(t) dt = 6e0.024t " 8.2 (billion people).

15. (B) “A quantity growing at the rate of 5% per year” means that after 1 yr the
quantity Q0 will have grown to 1.05Q0, after 2 yr to 1.05(1.05Q0), . . . , 
after t yr to (1.05)t • Q0.

16. (B) We want the accumulated number of people to be 100:

h

0
(10 + 40t)dt = 100

(10t + 20t2)|h0 = 100

20h2 + 10h – 100 = 0
10(2h + 5)(h – 2) = 0

This occurs at h = 2 hours after 8 A.M.

17. (C) Average velocity = (–32t + 96) dt = 64 ft/sec.

18. (A) Average volume = dt " 6 mg.

19. (A) The number of new people who hear the rumor during the second week is

(t2 + 10t) dt " 1535.

Be careful with the units! The answer is the total change, of course, in F(t)
from t = 7 to t = 14 days, where F#(t) = t2 + 10t.

20. (D) After partitioning [0, 8] into n subintervals, we approximate the amount of
oil leaking in a typical subinterval of duration )t: it is

1000 0 3e ttk− ∆ ×. gal/hr  hr.
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Further Applications of Integration 363

For the general Riemann sum we can choose any point in a subinterval, 
not necessarily the leftmost or rightmost; we’ve denoted this arbitrary
choice by the subscript k. This sum now adds all n of the small quantities
of oil (in gallons).

21. (B) Total gallons = = 1000e–0.3t dt ≈ 3031.

22. (A) Be careful! The number of cars is to be measured over a distance of x (not
20) mi. The answer to the question is a function, not a number. Note that
choice (C) gives the total number of cars on the entire 20-mi stretch.

23. (C) Since the strip of the city shown in the figure is at a distance r mi from the

highway, it is mi long and its area is )r. The strip’s 

population is approximately 2(12 – 2r) )r. The total population of

the entire city is twice the integral 2 (12 – 2r) dr as it includes

both halves of the city.

24. (C)

The population equals ¨ (area • density). We partition the interval [0,10]
along a radius from the center of town into 5 equal subintervals each of
width )r = 2 mi. We will divide Winnipeg into 5 rings. Each has area equal
to (circumference ¥ width), so the area is 2Urk )r or 4Urk . The population
in the ring is

.

A Riemann sum, using left-hand values, is 4U • 0 • 50 + 4U • 2 • 45 + 
4U • 4 • 40 + 4U • 6 • 30 + 4U • 8 • 15 = 4U(90 + 160 + 180 + 120) " 6912
hundred people—or about 691,200 people.

( ) ( ) ( )• •4 4π = πr r r f rk k k kdensity at 

∆ r

∆ r

rk

2πrk 

r 3
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 !0
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25. (E) The total amount dumped after 7 weeks is

.

26. (B) The total change in temperature of the roast 20 min after it is put in the
refrigerator is

–9e–0.08t dt or –89.7°F.

Since its temperature was 160°F when placed in the refrigerator, then 
20 min later it is (160 – 89.7)°F or about 70°F. Note that the temperature 
of the refrigerator (45°F) is not used in answering the question because it is
already “built into” the cooling rate.

27. (A) Let T be the number of weeks required to release 9 tons. We can use parts 

to integrate te–0.3t dt, then substitute the limits. We must then set the

resulting expression equal to 9 and solve for T. A faster, less painful 
alternative is to use a graphing calculator to solve the equation

te–0.3t dt = 9.

The answer is about 10.2 weeks.

28. (D) The amount by which your investment of $1000 today will increase in 

6yr is 80e0.08t dt or $616.07, so it will be worth $(1000 + 616.07). 

Note: 1000e0.08(6) = $1616.07.

29. (C) Average area = Ux2 dx = = 13U in2.

30. (D) Note that the curve is above the x-axis on [0, 1], but below on [1, 3], and
that the areas for x < 0 and x > 3 are unbounded.
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Using the calculator, we get

| x3 – 4x2 + 3x | dx ≈ 3.083.

31. (E) The FTC yields total change:

(–0.1t2 – 0.3t + 2) dt " 3.75 gal.

32. (C) The total change (increase) in population during the second hour is given 

by 1000e0.03t dt. The answer is 1046.

33. (C) We partition [0, 2] into n equal subintervals each of time )t hr. Since the

18-wheeler gets (4 + 0.01v) mi/gal of diesel, it uses gal/mi.

Since it covers v • )t mi during )t hr, it uses  • v • )t gal in )t hr.

Since v = 80 , we see that the diesel fuel used in the first 2 hr is
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367

A. BASIC DEFINITIONS
A differential equation (d.e.) is any equation involving a derivative. In §E of Chapter 5
we solved some simple differential equations. In Example 50, page 228, we were given
the velocity at time t of a particle moving along the x-axis:

. (1)

From this we found the antiderivative:

x(t) = t4 – t3 + C. (2)

If the initial position (at time t = 0) of the particle is x = 3, then

x(0) = 0 – 0 + C = 3,

and C = 3. So the solution to the initial-value problem is

x(t) = t4 – t3 + 3. (3)

v t
dx
dt

t t( ) = = −4 33 2

Differential Equations CHAPTER9
Concepts and Skills
In this chapter, we review how to write and solve differential equations, specifically,

• writing differential equations to model dynamic situations;
• understanding a slope field as a graphical representation of a differential equation

and its solutions;
• finding general and particular solutions of separable differential equations;
• and using differential equations to analyze growth and decay.

We also review two additional BC Calculus topics:

• Euler’s method to estimate numerical solutions
• and using differential equations to analyze logistic growth and decay.

Differential
equation
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A solution of a d.e. is any function that satisfies it. We see from (2) above that the
d.e. (1) has an infinite number of solutions—one for each real value of C. We call the
family of functions (2) the general solution of the d.e. (1). With the given initial condi-
tion x(0) = 3, we determined C, thus finding the unique solution (3). This is called the
particular solution. 

Note that the particular solution must not only satisfy the differential equation and
the initial condition, but the function must also be differentiable on an interval that con-
tains the initial point. Features such as vertical tangents or asymptotes restrict the
domain of the solution. Therefore, even when they are defined by the same algebraic rep-
resentation, particular solutions with different initial points may have different domains.
Determining the proper domain is an important part of finding the particular solution.  

In §A of Chapter 8 we solved more differential equations involving motion along a
straight line. In §B we found parametric equations for the motion of a particle along a
plane curve, given d.e.’s for the components of its acceleration and velocity.

Rate of Change
A differential equation contains derivatives. A derivative gives information about the rate
of change of a function. For example:

(1) If P is the size of a population at time t, then we can interpret the d.e.

= 0.0325P

as saying that at any time t the rate at which the population is growing is proportional
(3.25%) to its size at that time.

(2) The d.e. = –(0.000275)Q tells us that at any time t the rate at which the

quantity Q is decreasing is proportional (0.0275%) to the quantity existing at that time.
(3) In psychology, one typical stimulus-response situation, known as logarithmic

response, is that in which the response y changes at a rate inversely proportional to the
strength of the stimulus x. This is expressed neatly by the differential equation

(k a constant).

If we suppose, further, that there is no response when x = x0, then we have the condition 
y = 0 when x = x0.

(4) We are familiar with the d.e.

for the acceleration due to gravity acting on an object at a height s above ground level at
time t. The acceleration is the rate of change of the object’s velocity.

a
d s
dt

= =
2

2
232–  ft/sec

dy
dx

k
x

=

dQ
dt

dP
dt

368 AP Calculus

Solution

General 
solution

Particular
solution

Domain
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B. SLOPE FIELDS
In this section we solve differential equations by obtaining a slope field or calculator pic-
ture that approximates the general solution. We call the graph of a solution of a d.e. a
solution curve.

The slope field of a d.e. is based on the fact that the d.e. can be interpreted as a
statement about the slopes of its solution curves.

EXAMPLE 1

The d.e. = y tells us that at any point (x, y) on a solution curve the slope of

the curve is equal to its y-coordinate. Since the d.e. says that y is a function
whose derivative is also y, we know that

y = ex

is a solution. In fact, y = Cex is a solution of the d.e. for every constant C, since
y! = Cex = y.

The d.e. y! = y says that, at any point where y = 1, say (0, 1) or (1, 1) or 
(5, 1), the slope of the solution curve is 1; at any point where y = 3, say (0, 3), 
(ln 3, 3), or (U, 3), the slope equals 3; and so on.

In Figure N9–1a we see some small line segments of slope 1 at several points
where y = 1, and some segments of slope 3 at several points where y = 3. In
Figure N9–1b we see the curve of y = ex with slope segments drawn in as follows:

POINT SLOPE

(0,1) 1

(1,e) e ! 2.7

FIGURE N9–1a FIGURE N9–1b

y
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Figure N9–1c is the slope field for the d.e. = y obtained from our calcula-

tor program. The program computes slopes at many points (x, y) and draws small
segments of the tangents at those points. The small segments approximate the solu-
tion curves. If we start at any point in the slope field and move so that the slope
segments are always tangent to our motion, we will trace a solution curve. The
slope field, as mentioned above, closely approximates the family of solutions.

[–6,6] ¥ [–1,3]

FIGURE N9–1c

EXAMPLE 2

The slope field for the d.e. is shown in Figure N9–2. 

(a) Carefully draw the solution curve that passes through the point (1, 0.5). 
(b) Find the general solution for the equation.

[0,3] ¥ [0,3]

FIGURE N9–2

(a) In Figure N9–2a we started at the point (1, 0.5), then moved from seg-
ment to segment drawing the curve to which these segments were tangent. The
particular solution curve shown is the member of the family of solution curves

y = ln x + C
that goes through the point (1, 0.5).

dy
dx x

= 1

dy
dx

7_4324_APCalc_17Chapter9A  10/4/09  3:51 PM  Page 370



Differential Equations 371

FIGURE N9–2a FIGURE N9–2b

(b) Since we already know that, if , then y = ! dx = ln x + C, we

are assured of having found the correct general solution in (a).
In Figure N9–2b we have drawn several particular solution curves of the

given d.e. Note that the vertical distance between any pair of curves is constant.

EXAMPLE 3
Match each slope field in Figure N9–3 with the proper d.e. from the following
set. Find the general solution for each d.e. The particular solution that goes
through (0,0) has been sketched in.

(A) (B)

(C) (D)

[–2,2] ¥ [–2,2] [–2,2] ¥ [–2,2]

FIGURE N9–3a FIGURE N9–3b

[–2U,2U] ¥ [–2,2] [–2,2] ¥ [–2,2]

FIGURE N9–3c FIGURE N9–3d

′ = − π
y

2
dy
dx

x= −3 32

dy
dx

x= 2′ =y xcos

1
x

dy
dx x

= 1
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SOLUTIONS:
(A) goes with Figure N9–3c. The solution curves in the family y = sin x + C

are quite obvious.
(B) goes with Figure N9–3a. The general solution is the family of parabolas

y = x2 + C.
For (C) the slope field is shown in Figure N9–3b. The general solution is the

family of cubics y = x3 – 3x + C.
(D) goes with Figure N9–3d; the general solution is the family of lines y = 

x + C.

EXAMPLE 4

(a) Verify that relations of the form x2 + y2 = r2 are solutions of the d.e. .

(b) Using the slope field in Figure N9–4 and your answer to (a), find the particu-
lar solution to the d.e. given in (a) that contains point (4,–3).

[–7,7] ¥ [–7,7]

FIGURE N9–4

(a) By differentiating equation x 2 + y2 = r 2 implicitly, we get 2x + 2y = 0,

from which , which is the given d.e.

(b) x 2 + y2 = r 2 describes circles centered at the origin. For initial point (4,–3),
(4)2 + (–3)2 = 25. So x 2 + y2 = 25. However, this is not the particular solution. 

A particular solution must be differentiable on an interval containing the initial 

point. This circle is not differentiable at (–5,0) and (5,0). (The d.e. shows 

undefined when y = 0, and the slope field shows vertical tangents along the x-axis.)
Hence, the particular solution includes only the semicircle in quadrants III and IV.  

Solving x 2 + y2 = 25 for y yields y = ± . The particular solution 

through point (4,–3) is y = – with domain –5 < x < 5.

Derivatives of Implicitly Defined Functions
In Examples 2 and 3 above, each d.e. was of the form = f (x) or y! = f (x). We were

able to find the general solution in each case very easily by finding the antiderivative
y = !f (x) dx.

dy
dx

25 2− x

25 2− x

dy
dx

dy
dx

x
y

= −

dy
dx

dy
dx

x
y

= −

− π
2
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We now consider d.e.’s of the form , where f (x,y) is an expression in x

and y; that is, is an implicitly defined function. Example 4 illustrates such a differential 

equation. Here is another example.

EXAMPLE 5
Figure N9–5 shows the slope field for

y! = x + y. (1)

At each point (x,y) the slope is the sum of its coordinates. Three particular solu-
tions have been added, through the points

(a) (0,0) (b) (0, –1) (c) (0, –2)

[–4,4] ¥ [–4,4]

FIGURE N9–5

C. EULER’S METHOD
In §B we found solution curves to first-order differential equations graphically, using
slope fields. Here we will find solutions numerically, using Euler’s method to find points
on solution curves.

When we use a slope field we start at an initial point, then move step by step so the
slope segments are always tangent to the solution curve. With Euler’s method we again
select a starting point; but now we calculate the slope at that point (from the given d.e.),
use the initial point and that slope to locate a new point, use the new point and calculate
the slope at it (again from the d.e.) to locate still another point, and so on. The method is
illustrated in Example 6.

dy
dx

dy
dx

f x y= ( , )

BC ONLY

(a)(a)

(c)                                 (b)
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EXAMPLE 6

Let . Use Euler’s method to approximate the y-values with four steps,

starting at point P0(1, 0) and letting )x = 0.5.

The slope at P0 = (x0, y0) = (1, 0) is . To find the y-coordinate 

of P1(x1, y1), we add )y to y0. Since , we estimate ∆y " · ∆x:

∆y = (slope at P0) · ∆x = 3 · (0.5) = 1.5.

Then y1 = y0 + ∆y = 0 + 1.5 = 1.5

and P1 = (1.5,1.5).

To find the y-coordinate of P2(x2, y2) we add )y to y1, where

∆y = (slope at P1) · ∆x = · ∆x = · (0.5) = 1.0.

Then y2 = y1 + ∆y = 1.5 + 1.0 = 2.5

and P2 = (2.0,2.5).

To find the y-coordinate of P3(x3, y3) we add )y to y2, where

∆y = (slope at P2) · ∆x = · ∆x = · (0.5) = 0.75.

Then y3 = y2 + )y = 2.5 + 0.75 = 3.25,

P3 = (2.5, 3.25),

and so on.
The table summarizes all the data, for the four steps specified, from x = 1 to x = 3:

TABLE FOR 

x y (SLOPE) • (0.5) =      ∆y TRUE y *

P0 1 0 (3/1) • (0.5) = 1.5 0
P1 1.5 1.5 (3/1.5) • (0.5) = 1.0 1.216
P2 2.0 2.5 (3/2) • (0.5) = 0.75 2.079
P3 2.5 3.25 (3/2.5) • (0.5) = 0.60 2.749
P4 3.0 3.85 (3/3.0) • (0.5) = 0.50 3.296

*To three decimal places.

dy
dx x

= 3

3
2

3
2x

3
1 5.

3
1x

dy
dx

dy
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y
x

≈
∆
∆

dy
dx x

= = =
3 3

1
3

0
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dx x

=
3
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The table gives us the numerical solution of using Euler’s method.

Figure N9–6a shows the graphical solution, which agrees with the data from the
table, for x increasing from 1 to 3 by four steps with )x equal to 0.5 Figure N9–6b 

shows this Euler graph and the particular solution of passing through

the point (1,0), which is y = 3 ln x.

FIGURE N9–6a

FIGURE N9–6b

We observe that, since y" for 3 ln x equals , the true curve is concave

down and below the Euler graph.

–
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0.5

1.0

dy
dx x

=
3

dy
dx x

=
3

Differential Equations 375

BC ONLY

7_3679_APCalc_17Chapter9A  10/3/08  4:29 PM  Page 375



376 AP Calculus

The last column in the table on page 374 shows the true values (to three dec-
imal places) of y. The Euler approximation for 3ln 3 is 3.85; the true value is
3.296. The Euler approximation with four steps is not very good! However, see
what happens as we increase the number n of steps:

n EULER APPROXIMATION ERROR

4 3.85 0.554
10 3.505 0.209
20 3.398 0.102
40 3.346 0.050
80 3.321 0.025

Doubling the number of steps cuts the error approximately in half.

EXAMPLE 7

Given the d.e. = x + y with initial condition y(0) = 0, use Euler’s method

with )x = 0.1 to estimate y when x = 0.5.
Here are the relevant computations:

(SLOPE) • ∆x =
x y (x + y) • (0.1) = ∆y

P0 0 0 0(0.1) = 0

P1 0.1 0 (0.1)(0.1) = 0.01

P2 0.2 0.01 (0.21)(0.1) = 0.021

P3 0.3 0.031 (0.331)(0.1) = 0.033

P4 0.4 0.064 (0.464)(0.1) = 0.046

P5 0.5 0.110

A Caution: Euler’s method approximates the solution by substituting short line
segments in place of the actual curve. It can be quite accurate when the step 
sizes are small, but only if the curve does not have discontinuities, cusps, 
or asymptotes.

For example, the reader may verify that the curve for the domain  

x < solves the differential equation with initial condition y = -1 

when x = 2. The domain restriction is important. Recall that a particular solution
must be differentiable on an interval containing the initial point. If we attempt to
approximate this solution using Euler’s method with step size Dx = 1, the first step
carries us to point (3, -3), beyond the discontinuity at and thus outside the
domain of the solution. The accompanying graph (Figure N9–7, page 377) shows
that this is nowhere near the solution curve with initial point y = 1 when x = 3 (and
whose domain is x > ). Here, Euler’s method fails because it leaps blindly across
the vertical asymptote at .

Always pay attention to the domain of any particular solution.
 x = 5

2

5
2

x = 5
2

dy
dx

y= −2 25
2

y
x

=
−

1
2 5

dy
dx
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FIGURE N9–7

D. SOLVING FIRST-ORDER DIFFERENTIAL 
EQUATIONS ANALYTICALLY
In the preceding sections we solved differential equations graphically, using slope fields,
and numerically, using Euler’s method. Both methods yield approximations. In this sec-
tion we review how to solve some differential equations exactly.

Separating Variables
A first-order d.e. in x and y is separable if it can be written so that all the terms involving
y are on one side and all the terms involving x are on the other.

A differential equation has variables separable if it is of the form

or g(y) dy – f(x) dx = 0.

The general solution is

#g(y) dy – #f(x) dx = C (C arbitrary).

dy
dx

f x
g y

= ( )
( )

5.0

–5.0

–2.0 5.0

(2,–1)

(3,1)

(3,–3)
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EXAMPLE 8

Solve the d.e. , given the initial condition y(0) = 2.

We rewrite the equation as y dy = –x dx. We then integrate, getting

#y dy = –#x dx ,

y2 = x2 + k ,

y2 + x2 = C (where C = 2k).

Since y(0) = 2, we get 4 + 0 = C; the particular solution is therefore x2 + y2 = 4.
(We need to specify above that y > 0. Why?)

EXAMPLE 9

If = and t = 0 when s = 1, find s when t = 9.

We separate variables:

;

then integration yields

.

Using s = 1 and t = 0, we get 2 = • 0 + C, so C = +2. Then

or .

When t = 9, we find that s1/2 = 9 + 1, so s = 100.

EXAMPLE 10

If (ln y) , and y = e when x = 1, find the value of y greater than 1 that 

corresponds to x = e4.

Separating, we get dy = . We integrate:

.

Using y = e when x = 1 yields C = , so

.

When x = e4, we have ln2 y = 4 + ; thus ln2 y = 9 and ln y = 3 (where we

chose ln y > 0 because y > 1), so y = e3.

1
2

1
2

1
2

1
2

2ln lny x= +

1
2

1
2

2ln lny x C= +

dx
x

ln y
y

dy
dx

y
x

=

s t1 2 3 21
3

1= +2
2
3

21 2 3 2s t= +

2
3

2
2
3

1 2 3 2s t C= +

ds
s

t dt=

stds
dt

− 1
2

1
2

dy
dx

x
y
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EXAMPLE 11

Find the general solution of the differential equation = ev–u. We rewrite:

.

Taking antiderivatives yields eu = ev + C, or u = ln(ev + c).

E. EXPONENTIAL GROWTH AND DECAY
We now apply the method of separation of variables to three classes of functions associ-
ated with different rates of change. In each of the three cases, we describe the rate of
change of a quantity, write the differential equation that follows from the description,
then solve—or, in some cases, just give the solution of—the d.e. We list several applica-
tions of each case, and present relevant problems involving some of the applications.

Case I: Exponential Growth
An interesting special differential equation with wide applications is defined by the follow-
ing statement: “A positive quantity y increases (or decreases) at a rate that at any time t is
proportional to the amount present.” It follows that the quantity y satisfies the d.e.

, (1)

where k > 0 if y is increasing and k < 0 if y is decreasing.

From (1) it follows that 

,

# #k dt ,

ln y = kt + C (C a constant).
Then

y = ekt + C = ekt • eC

= cekt (where c = eC).

If we are given an initial amount y, say y0 at time t = 0, then

y0 = c • ek • 0 = c • 1 = c,

and our law of exponential change

y = cekt (2)

1
y

dy =

dy
y

k dt=

dy
dt

ky=

du
dv

e
e

e du e dv
v

u
u v= =;

du
dv

Exponential
growth
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tells us that c is the initial amount of y (at time t = 0). If the quantity grows with time,
then k > 0; if it decays (or diminishes, or decomposes), then k < 0. Equation (2) is often
referred to as the law of exponential growth or decay.

The length of time required for a quantity that is decaying exponentially to be
reduced by half is called its half-life.

EXAMPLE 12
The population of a country is growing at a rate proportional to its population. If
the growth rate per year is 4% of the current population, how long will it take for
the population to double?

If the population at time t is P, then we are given that = 0.04P. Substi-

tuting in equation (2), we see that the solution is

P = P0e0.04t,

where P0 is the initial population. We seek t when P = 2P0:

2P0 = P0e0.04t,
2 = e0.04t,

ln 2 = 0.04t,

t = ! 17.33 yr.

EXAMPLE 13
The bacteria in a certain culture increase continuously at a rate proportional to the
number present. (a) If the number triples in 6 hours, how many will there be in 12
hours? (b) In how many hours will the original number quadruple?

We let N be the number at time t and N0 the number initially. Then

, , ln N = kt + C, and ln N0 = 0 + C,

so that C = ln N0. The general solution is then N = N0ekt, with k still to be determined.

Since N = 3N0 when t = 6, we see that 3N0 = N0e6k and that k = ln 3. Thus

N = N0e(t ln 3)/6.

(a) When t = 12, N = N0e2 ln 3 = N0eln 32
= N0eln 9 = 9N0.

(b) We let N = 4N0 in the centered equation above, and get

, ln 4 = ln 3, and t = ! 7.6 hr.
6 4

3
ln

ln
t
6

4 3 6= e t( ln )

1
6

dN
N

k dt=dN
dt

kN=

ln
.

2
0 04

dP
dt
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EXAMPLE 14
Radium-226 decays at a rate proportional to the quantity present. Its half-life is
1612 years. How long will it take for one quarter of a given quantity of radium-
226 to decay?

If Q(t) is the amount present at time t, then it satisfies the equation

Q(t) = Q0ekt, (1)

where Q0 is the initial amount and k is the (negative) factor of proportionality. Since 

it is given that Q = Q0 when t = 1612, equation (1) yields

,

,

= –0.043% to the nearest thousandth of a percent.

We now have

Q = Q0e–0.00043t. (2)

When one quarter of Q0 has decayed, three quarters of the initial amount remains.
We use this fact in equation (2) to find t:

,

,

Applications of Exponential Growth
(1) A colony of bacteria may grow at a rate proportional to its size. 
(2) Other populations, such as those of humans, rodents, or fruit flies, whose supply of

food is unlimited may also grow at a rate proportional to the size of the population. 
(3) Money invested at interest that is compounded continuously accumulates at a rate

proportional to the amount present. The constant of proportionality is the interest
rate. 

(4) The demand for certain precious commodities (gas, oil, electricity, valuable metals)
has been growing in recent decades at a rate proportional to the existing demand.

Each of the above quantities (population, amount, demand) is a function of the
form cekt (with k > 0). (See Figure N9–7a.)

t =
−

≈
ln

.

3
4

0 00043
669 yr.

3
4

0 00043= −e t.

3
4 0 0

0 00043Q Q e t= − .

k = = −
ln

.

1
2
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0 00043

1
2
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1
2 0 0

1612Q Q ek= ( )
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2
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(5) Radioactive isotopes, such as uranium-235, strontium-90, iodine-131, and carbon-
14, decay at a rate proportional to the amount still present. 

(6) If P is the present value of a fixed sum of money A due t years from now, where the
interest is compounded continuously, then P decreases at a rate proportional to the
value of the investment. 

(7) It is common for the concentration of a drug in the bloodstream to drop at a rate
proportional to the existing concentration. 

(8) As a beam of light passes through murky water or air, its intensity at any depth (or
distance) decreases at a rate proportional to the intensity at that depth.

Each of the above four quantities (5 through 8) is a function of the form ce–kt (k > 0).
(See Figure N9–7b.)

This is exponential growth. This is exponential decay.

FIGURE N9–7a FIGURE N9–7b

EXAMPLE 15
At a yearly rate of 5% compounded continuously, how long does it take for an
investment to triple?

If P dollars are invested for t yr at 5%, the amount will grow to A = Pe0.05t in t
yr. We seek t when A = 3P:

EXAMPLE 16
One important method of dating fossil remains is to determine what portion of the
carbon content of a fossil is the radioactive isotope carbon-14. During life, any
organism exchanges carbon with its environment. Upon death this circulation
ceases, and the 14C in the organism then decays at a rate proportional to the
amount present. The proportionality factor is 0.012% per year.

When did an animal die, if an archaeologist determines that only 25% of the
original amount of 14C is still present in its fossil remains?

The quantity Q of 14C present at time t satisfies the equation

with solution
Q t Q e t( ) .= −

0
0 00012

dQ
dt

Q= −0 00012.

 

3

3
0 05

22

0 05=

=

e

t

t. ,

ln
.

  yr.!

t

y

0

c

y = ce–kt

As  t →∞, y →0.
t

y

0

c

y = cekt

As  t →∞, y →∞.
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(where Q0 is the original amount). We are asked to find t when Q(t) = 0.25Q0.

0.25Q0 = Q0e–0.00012t,
0.25 = e–0.00012t,

ln 0.25 = –0.00012t,
–1.386 = –0.00012t,

t ! 11,550.

Rounding to the nearest 500 yr, we see that the animal died approximately 
11,500yr ago.

EXAMPLE 17
In 1970 the world population was approximately 3.5 billion. Since then it has
been growing at a rate proportional to the population, and the factor of propor-
tionality has been 1.9% per year. At that rate, in how many years would there be
one person per square foot of land? (The land area of Earth is approximately
200,000,000 mi2, or about 5.5 ¥ 1015 ft2.)

If P(t) is the population at time t, the problem tells us that P satisfies the 

equation = 0.019P. Its solution is the exponential growth equation

P(t) = P0e0.019t,

where P0 is the initial population. Letting t = 0 for 1970, we have

3.5 ¥ 109 = P(0) = P0e0 = P0.

Then
P(t) = (3.5 ¥ 109)e0.019t.

The question is: for what t does P(t) equal 5.5 ¥ 1015? We solve

(3.5)(109)e0.019t = (5.5)1015,
e0.019t ! (1.6)106.

Taking the logarithm of each side yields

0.019t ! ln 1.6 + 6 ln 10 ! 14.3,
t ! 750 yr,

where it seems reasonable to round off as we have. Thus, if the human popula-
tion continued to grow at the present rate, there would be one person for every
square foot of land in the year 2720.

Case II: Restricted Growth
The rate of change of a quantity y = f (t) may be proportional, not to the amount 
present, but to a difference between that amount and a fixed constant. Two situations are
to be distinguished: The rate of change is proportional to

(a) a fixed constant A minus the (b) the amount of the quantity present
amount of the quantity present: minus a fixed constant A:

f !(t) = k[A – f(t)] f !(t) = –k[ f(t) – A]

dP
dt

Restricted
growth
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where (in both) f(t) is the amount at time t and k and A are both positive. We may conclude
that

(a) f(t) is increasing (Fig. N9–8a): (b) f(t) is decreasing (Fig. N9–8b):

f(t) = A – ce–kt f(t) = A + ce–kt

for some positive constant c.

FIGURE N9–8a FIGURE N9–8b

Here is how we solve the d.e. for Case II(a), where A – y > 0. If the quantity at time
t is denoted by y and k is the positive constant of proportionality, then

,

,

–ln (A – y) = kt + C,

ln (A – y) = –kt – C,

A – y = e–kt • e–C

= ce–kt, where c = e–C,
and

y = A – ce–kt.

Case II (b) can be solved similarly.

EXAMPLE 18
According to Newton’s law of cooling, a hot object cools at a rate proportional to
the difference between its own temperature and that of its environment. If a roast
at room temperature 68°F is put into a 20°F freezer, and if, after 2 hours, the tem-
perature of the roast is 40°F: (a) What is its temperature after 5 hours? (b) How
long will it take for the temperature of the roast to fall to 21°F?

dy
A y

k dt
−

=

′ = = −y
dy
dt

k A y( )

t
0

Amount, f(t) 

f (t ) = A + ce–kt 

A + c

A

A + c is the initial amount; as t → ∞, f (t) → A ;
so A is a lower limit on the size of f.

t
0

Amount, f (t) 

f (t ) = A – ce–kt 

A – c

A

A – c is the initial amount; as t → ∞, f (t) → A ;
so A is an upper limit on the size of f.
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This is an example of Case II (b) (the temperature is decreasing toward the
limiting temperature 20°F).

(a) If R(t) is the temperature of the roast at time t, then

= –k[R(t) – 20] and R(t) = 20 + ce–kt.

Since R(0) = 68°F, we have
68 = 20 + c,

c = 48,
R(t) = 20 + 48e–kt.

Also, R(2) = 40°F, so 40 = 20 + 48e–k • 2

and e–k ! 0.65,

yielding R(t) = 20 + 48(0.65) t (*)

and, finally, R(5) = 20 + 48(0.65)5 ! 26°F.

(b) Equation (*) in part (a) gives the roast’s temperature at time t. We must
find t when R = 21:

21 = 20 + 48 (0.65) t,

= (0.65) t,

–ln 48 = t ln(0.65),

t ! 9 hr.

EXAMPLE 19
Advertisers generally assume that the rate at which people hear about a product
is proportional to the number of people who have not yet heard about it. Suppose
that the size of a community is 15,000, that to begin with no one has heard about
a product, but that after 6 days 1500 people know about it. How long will it take
for 2700 people to have heard of it?

Let N(t) be the number of people aware of the product at time t. Then we are
given that

N !(t) = k[15,000 – N(t)],

which is Case IIa. The solution of this d.e. is

N(t) = 15,000 – ce–kt.

Since N(0) = 0, c = 15,000 and

N(t) = 15,000(1 – e–kt).

Since 1500 people know of the product after 6 days, we have

1500 = 15,000(1 – e–6k),
e–6k = 0.9,

k = = 0.018.
ln .0 9

6−

1
48

dR t
dt
( )
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We now seek t when N = 2700:

2700 = 15,000(1 – e–0.018t),
0.18 = 1 – e–0.018t,

e–0.018t = 0.82,
t ! 11 days.

Applications of Restricted Growth
(1) Newton’s law of heating says that a cold object warms up at a rate proportional

to the difference between its temperature and that of its environment. If you put a roast at
68°F into an oven of 400°F, then the temperature at time t is R(t) = 400 – 332e–kt.

(2) Because of air friction, the velocity of a falling object approaches a limiting value
L (rather than increasing without bound). The acceleration (rate of change of velocity) is
proportional to the difference between the limiting velocity and the object’s velocity. If
initial velocity is zero, then at time t the object’s velocity V(t) = L(1 – e–kt).

(3) If a tire has a small leak, then the air pressure inside drops at a rate proportional
to the difference between the inside pressure and the fixed outside pressure O. At time t
the inside pressure P(t) = O + ce–kt.

Case III: Logistic Growth
The rate of change of a quantity (for example, a population) may be proportional both to
the amount (size) of the quantity and to the difference between a fixed constant A and its
amount (size). If y = f(t) is the amount, then

y! = ky(A – y), (1)

where k and A are both positive. Equation (1) is called the logistic differential equation;
it is used to model logistic growth.

The solution of the d.e. (1) is

(2)

for some positive constant c.
In most applications, c > 1. In these cases, the initial amount A/(1 + c) is less than

A/2. In all applications, since the exponent of e in the expression for f(t) is negative for
all positive t, therefore, as t Æ h,

(1) ce–Akt Æ 0;
(2) the denominator of f(t) Æ 1;
(3) f(t) Æ A.

Thus, A is an upper limit of f in this growth model. When applied to populations, A is
called the carrying capacity or the maximum sustainable population.

Shortly we will solve specific examples of the logistic d.e. (1), instead of obtaining
the general solution (2), since the latter is algebraically rather messy. (It is somewhat less
complicated to verify that y! in (1) can be obtained by taking the derivative of (2).)

y
A
ce Akt=

+ −1
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Unrestricted Versus Restricted Growth

FIGURE N9–9a FIGURE N9–9b

In Figures N9–9a and N9–9b we see the graphs of the growth functions of Cases I
and III. The growth function of Case I is known as the unrestricted (or uninhibited or
unchecked ) model. It is not a very realistic one for most populations. It is clear, for
example, that human populations cannot continue endlessly to grow exponentially. Not
only is Earth’s land area fixed, but also there are limited supplies of food, energy, and
other natural resources. The growth function in Case III allows for such factors, which
serve to check growth. It is therefore referred to as the restricted (or inhibited) model.

The two graphs are quite similar close to 0. This similarity implies that logistic
growth is exponential at the start—a reasonable conclusion, since populations are small
at the outset.

The S-shaped curve in Case III is often called a logistic curve. It shows that the rate
of growth y !:

(1) increases slowly for a while; i.e., y " > 0;
(2) attains a maximum when y = A/2, at half the upper limit to growth;
(3) then decreases (y " < 0), approaching 0 as y approaches its upper limit.

It is not difficult to verify these statements.

Applications of Logistic Growth
(1) Some diseases spread through a (finite) population P at a rate proportional to

the number of people, N(t), infected by time t and the number, P – N(t), not yet infected.
Thus N !(t) = kN(P – N) and, for some positive c and k,

.

(2) A rumor (or fad or new religious cult) often spreads through a population P
according to the formula in (1), where N(t) is the number of people who have heard the
rumor (acquired the fad, converted to the cult), and P – N(t) is the number who have not.

(3) Bacteria in a culture on a Petri dish grow at a rate proportional to the product of
the existing population and the difference between the maximum sustainable population
and the existing population. (Replace bacteria on a Petri dish by fish in a small lake, ants
confined to a small receptacle, fruit flies supplied with only a limited amount of food,
yeast cells, and so on.)

N t
P
ce Pkt( ) –=

+1

y

0

Case III:
y = 

Time

A

A
2

A
1 + c

1 + ce–Akt
A

y

0

c

Case I:
y = cekt

Time
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(4) Advertisers sometimes assume that sales of a particular product depend on the
number of TV commercials for the product and that the rate of increase in sales is pro-
portional both to the existing sales and to the additional sales conjectured as possible.

(5) In an autocatalytic reaction a substance changes into a new one at a rate propor-
tional to the product of the amount of the new substance present and the amount of the
original substance still unchanged.

EXAMPLE 20
Because of limited food and space, a squirrel population cannot exceed 1000. It
grows at a rate proportional both to the existing population and to the attainable
additional population. If there were 100 squirrels 2 years ago, and 1 year ago the
population was 400, about how many squirrels are there now?

Let P be the squirrel population at time t. It is given that

= kP(1000 – P) (3)

with P(0) = 100 and P(1) = 400. We seek P(2).
We will find the general solution for the given d.e. (3) by separating the 

variables:

= k dt.

It can easily be verified, using partial fractions, that

.

Now we integrate:

# # #k dt,

getting
ln P – ln(1000 – P) = 1000kt + C

or
,

(where c = e–C),

,

,

,
P

ce kt1000
1

1 1000=
+ −

1000
1 1000

P
ce kt= + −

1000
1 1000

P
ce kt− = −

1000 1000− = −P
P

ce kt

ln
( )

( )
1000

1000
− = − +P

P
kt C

dP
P1000 1000( )−

=dP
P1000

+

1
1000

1
1000

1
1000 1000P P P P( ) ( )−

= +
−

dP
P P( – )1000

dP
dt
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and, finally (!),

. (4)

Please note that this is precisely the solution “advertised” on page 386 in equation
(2), with A equal to 1000!

Now, using our initial condition P(0) = 100 in (4), we get

and c = 9.

Using P(1) = 400, we get

,

1 + 9e–1000k = 2.5,

. (5)

Then the particular solution is

P(t) = (6)

and P(2) ! 800 squirrels.

[0,2.5] ¥ [0,1000]

FIGURE N9–10

Figure N9–10 shows the slope field for equation (3), with k = 0.00179, which
was obtained by solving equation (5) above. Note that the slopes are the same
along any horizontal line, and that they are close to zero initially, reach a maxi-
mum at P = 500, then diminish again as P approaches its limiting value, 1000. We
have superimposed the solution curve for P(t) that we obtained in (6) above.

 

1000
1 9 1 6+ ( )t

e k− = =1000 1 5
9

1
6

.

400
1000

1 9 1000=
+ −e k

100
1000

1
1

=
+ c

P t
ce kt( ) =

+ −

1000
1 1000
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390 AP Calculus

EXAMPLE 21
Suppose a flu-like virus is spreading through a population of 50,000 at a rate
proportional both to the number of people already infected and to the number
still uninfected. If 100 people were infected yesterday and 130 are infected
today:

(a) write an expression for the number of people N(t) infected after t days;
(b) determine how many will be infected a week from today;
(c) indicate when the virus will be speading the fastest.

(a) We are told that N!(t) = k • N • (50,000 – N), that N(0) = 100, and that
N(1) = 130. The d.e. describing logistic growth leads to

.

From N(0) = 100, we get

,

which yields c = 499. From N(1) = 130, we get

,

130(1 + 499e–50,000k) = 50,000,
e–50,000k = 0.77.

Then

(b) We must find N(8). Since t = 0 represents yesterday:

.

(c) The virus spreads fastest when 50,000/2 = 25,000 people have been
infected.

Chapter Summary and Caution
In this chapter, we have considered some simple differential equations and ways to solve
them. Our methods have been graphical, numerical, and analytical. Equations that we
have solved analytically—by antidifferentiation—have been separable.

It is important to realize that, given a first-order differential equation of the type 

= F(x,y), it is the exception, rather than the rule, to be able to find the general solu-

tion by analytical methods. Indeed, a great many practical applications lead to d.e.’s for
which no explicit algebraic solution exists.

dy
dx

 
N( )

,
( . )

8
50 000

1 499 0 77 8=
+

  798 people!

 
N t t( )

,
( . )

.=
+

50 000
1 499 0 77

130
50 000

1 499 50 000=
+ −

,
,e k

100
50 000
1

=
+
,

c

N t
ce kt( )

,
,=

+ −

50 000
1 50 000
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Practice Exercises
Part A. Directions: Answer these questions without using your calculator.

In Questions 1–10, a(t) denotes the acceleration function, v(t) the velocity function, and
s(t) the position or height function at time t. (The acceleration due to gravity is –32
ft/sec2.)

1. If a(t) = 4t – 1 and v(1) = 3, then v(t) equals

(A) 2t2 – t (B) 2t2 – t + 1 (C) 2t2 – t + 2
(D) 2t2 + 1 (E) 2t2 + 2

2. If a(t) = 20t3 – 6t, s(–1) = 2, and s(1) = 4, then v(t) equals

(A) t5 – t3 (B) 5t4 – 3t2 + 1 (C) 5t4 – 3t2 + 3
(D) t5 – t3 + t + 3 (E) t5 – t3 + 1

3. Given a(t), s(–1), and s(1) as in Question 2, then s(0) equals

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

4. A stone is thrown straight up from the top of a building with initial velocity 
40 ft/sec and hits the ground 4 sec later. The height of the building, in feet, is

(A) 88 (B) 96 (C) 112 (D) 128 (E) 144

5. The maximum height is reached by the stone in Question 4 after

(A) 4/5 sec (B) 4 sec (C) 5/4 sec (D) 5/2 sec (E) 2 sec

6. If a car accelerates from 0 to 60 mph in 10 sec, what distance does it travel in those
10 sec? (Assume the acceleration is constant and note that 60 mph = 88 ft/sec.)

(A) 40 ft (B) 44 ft (C) 88 ft (D) 400 ft (E) 440 ft

7. A stone is thrown at a target so that its velocity after t sec is (100 – 20t) ft/sec. If the
stone hits the target in 1 sec, then the distance from the sling to the target is

(A) 80 ft (B) 90 ft (C) 100 ft (D) 110 ft (E) 120 ft

8. What should the initial velocity be if you want a stone to reach a height of 100 ft
when you throw it straight up?

(A) 80 ft/sec (B) 92 ft/sec (C) 96 ft/sec
(D) 112 ft/sec (E) none of these
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392 AP Calculus

9. If the velocity of a car traveling in a straight line at time t is v(t), then the differ-
ence in its odometer readings between times t = a and t = b is

(A)

(B) v(t) dt

(C) the net displacement of the car’s position from t = a to t = b
(D) the change in the car’s position from t = a to t = b
(E) none of these

10. If an object is moving up and down along the y-axis with velocity v(t) and  

s!(t) = v(t), then it is false that v(t) dt gives

(A) s(b) – s(a)
(B) the net distance traveled by the object between t = a and t = b
(C) the total change in s(t) between t = a and t = b
(D) the shift in the object’s position from t = a to t = b
(E) the total distance covered by the object from t = a to t = b

11. Solutions of the differential equation y dy = x dx are of the form

(A) x2 – y2 = C (B) x2 + y2 = C (C) y2 = Cx2

(D) x2 – Cy2 = 0 (E) x2 = C – y2

12. Find the domain of the particular solution to the differential equation in Question
11 that passes through point (–2, 1). 

(A) x < 0 (B) –2 ≤ x < 0 (C) x < –
(D) < (E) > 

13. If and y = 1 when x = 4, then

(A) y2 = – 7 (B) ln y = – 8 (C) ln y = 

(D) y = (E) y = 

14. If = e y and y = 0 when x = 1, then

(A) y = ln (B) y = ln (C) e–y = 2 – x

(D) y = –ln (E) e–y = x – 2

15. If = and y = 5 when x = 4, then y equals 

(A) (B) (C)

(D) (E) none of these9 5
2

2+ +x

2 9 52+ −x9 2+ x9 52+ −x

x

x9 2+
dy
dx

x

2 − xx

dy
dx

e x −2e x

x − 24 x4 x

dy
dx

y
x

=
2

3x3x
3

 !a

b

 !a

b

v t dt( )
 !a

b
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16. The general solution of the differential equation x dy = y dx is a family of 

(A) circles (B) hyperbolas (C) parallel lines
(D) parabolas (E) lines passing through the origin

17. The general solution of the differential equation = y is a family of

(A) parabolas (B) straight lines (C) hyperbolas
(D) ellipses (E) none of these

18. A function f (x) that satisfies the equations f(x) f !(x) = x and f (0) = 1 is

(A) f (x) = (B) f (x) = (C) f (x) = x
(D) f (x) = ex (E) none of these

19. The curve that passes through the point (1, 1) and whose slope at any point (x, y) is 
equal to has the equation

(A) 3x – 2 = y (B) y3 = x (C) y = x3

(D) 3y2 = x2 + 2 (E) 3y2 – 2x = 1

20. What is the domain of the particular solution in Question 19?

(A) all real numbers (B) ≤ 1 (C) x ≠ 0
(D) x < 0 (E) x > 0

21. If , k a constant, and if y = 2 when x = 1 and y = 4 when x = e, then, when

x = 2, y equals

(A) 2 (B) 4 (C) ln 8 (D) ln 2 + 2 (E) ln 4 + 2

22. The slope field shown at the right 
is for the differential equation

(A) y ! = x + 1
(B) y ! = sin x
(C) y ! = –sin x
(D) y ! = cos x
(E) y ! = –cos x

[–2π, 2π] ¥ [–1.5, 1.5]

23. The slope field at the right is 
for the differential equation

(A) y ! = 2x
(B) y ! = 2x – 4
(C) y ! = 4 – 2x
(D) y ! = y
(E) y ! = x + y

[–4, 4] ¥ [–12, 12]

dy
dx

k
x

=

x

3y
x

1 2− xx2 1+

dy
dx
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24. A solution curve has been superimposed 
on the slope field shown at the right. 
The solution is for the differential 
equation and initial condition

(A) y ! = tan x; y(0) = 0
(B) y ! = cot x, y(U/4) = 1
(C) y ! = 1 + x2; y(0) = 0

(D) y ! = ; y = 1

(E) y ! = 1 + y2; y(0) = 0

[–4, 4] ¥ [–4, 4]

The slope fields below are for Questions 25–30.

I [–3, 3] ¥ [–3, 3] II [–3, 3] ¥ [–3, 3]

III [–5, 5] ¥ [–5, 5] IV [–3, 3] ¥ [–3, 3]

V [–2, 2] ¥ [–2, 2]

π



4

1
1 2+ x
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25. Which slope field is for the differential equation y ! = y?

(A) I (B) II (C) III (D) IV (E) V

26. Which slope field is for the differential equation y ! = ?

(A) I (B) II (C) III (D) IV (E) V

27. Which slope field is for the differential equation y ! = sin x?

(A) I (B) II (C) III (D) IV (E) V

28. Which slope field is for the differential equation y ! = 2x? 

(A) I (B) II (C) III (D) IV (E) V

29. Which slope field is for the differential equation y ! = ?

(A) I (B) II (C) III (D) IV (E) V

30. A particular solution curve of a differential equation whose slope field is shown
above in II passes through the point (0,–1). The equation is

(A) y = –ex (B) y = –e–x (C) y = x2 – 1 (D) y = –cos x

(E) y = 

31. If you use Euler’s method with ∆x = 0.1 for the d.e. y ! = x, with initial value 
y(1) = 5, then, when x = 1.2, y is approximately

(A) 5.10 (B) 5.20 (C) 5.21 (D) 6.05 (E) 7.10

32. The error in using Euler’s method in Question 29 is 

(A) 0.005 (B) 0.010 (C) 0.050 (D) 0.500 (E) 0.720

Part B. Directions: Some of the following questions require the use of a graphing 
calculator.

33. If = sin2 and if s = 1 when t = 0, then, when s = , t is equal to

(A) (B) (C) 1 (D) (E)

34. If radium decomposes at a rate proportional to the amount present, then the amount
R left after t yr, if R0 is present initially and c is the negative constant of propor-
tionality, is given by

(A) R = R0ct (B) R = R0ect (C) R = R0 + ct2

(D) R = (E) R = eR ct0 +eR ct0

1
2

−
π
22

π
π
2

1
2

3
2

π( )2
s

ds
dt

− −1 2x

e x− 2

− x
y
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35. The population of a city increases continuously at a rate proportional, at any time,
to the population at that time. The population doubles in 50 yr. After 75 yr the 
ratio of the population P to the initial population P0 is

(A) (B) (C) (D) (E) none of these

36. If a substance decomposes at a rate proportional to the amount of the substance
present, and if the amount decreases from 40 g to 10 g in 2 hr, then the 
constant of proportionality is

(A) –ln 2 (B) (C) (D) (E)

37. If for all real x and g(0) = 0, g(4) = 4, then g(1) equals

(A) (B) (C) 1 (D) 2 (E) 4

38. The solution curve of y ! = y that passes through point (2, 3) is

(A) y = ex + 3 (B) y = (C) y = 0.406ex

(D) y = ex – (e2 + 3) (E) y = ex/(0.406)

39. At any point of intersection of a solution curve of the d.e. y! = x + y and the line 
x + y = 0, the function y at that point

(A) is equal to 0 (B) is a local maximum (C) is a local minimum
(D) has a point of inflection (E) has a discontinuity

40. The slope field for is 
shown at the right with the particular 
solution F(0) = 0 superimposed. 
With a graphing calculator,

to three decimal places is

(A) 0.886 (B) 0.987
(C) 1.000 (D) 1.414
(E) h

[–2, 2] ¥ [–2, 2]

lim ( )
x

F x
→ ∞

′ = −F x e x( )
2

2 5x +

1
2

1
4

( ( )) ( )′ =g x g x2

ln
1
8

ln
1
4

− 1
4

− 1
2

2 2
1

4
1

5
2

9
4
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41. Which of these statements about Euler’s method is(are) true?

I. It can be used to estimate solutions of differential equations numerically.

II. It cannot be applied to an equation of the form where F is 

defined implicitly.
III. It should not be used on an interval on which the function becomes infinite.

(A) I only (B) II only (C) III only

(D) I and III only (E) I, II, and III

42. Which statement about Euler’s method is false?

(A) If you halve the step size, you approximately halve the error.
(B) Euler’s method never gives exact solutions.
(C) Euler’s method assumes that the slope of a solution curve is the same at 

all points in a short interval.
(D) Often, when applying Euler’s method, the more steps you take the smaller

the error.
(E) Euler’s method is used to string together a set of linearizations that 

approximate a curve.

43. A cup of coffee at temperature 180°F is placed on a table in a room at 68°F. The 

d.e. for its temperature at time t is = –0.11(y – 68); y(0) = 180. After 10 min

the temperature (in °F) of the coffee is

(A) 96 (B) 100 (C) 105 (D) 110 (E) 115

44. Approximately how long does it take the temperature of the coffee in Question 41
to drop to 75°F?

(A) 10 min (B) 15 min (C) 18 min (D) 20 min (E) 25 min

45. The concentration of a medication injected into the bloodstream drops at a rate pro-
portional to the existing concentration. If the factor of proportionality is 30% per hour,
in how many hours will the concentration be one-tenth of the initial concentration?

(A) 3 (B) (C)

(D) (E) none of these

46. Which of the following statements characterize(s) the logistic growth of a popula-
tion whose limiting value is L?

I. The rate of growth increases at first.

II. The growth rate attains a maximum when the population equals .

III. The growth rate approaches 0 as the population approaches L.

(A) I only (B) II only (C) I and II only
(D) II and III only (E) I, II, and III

L
2

7
2
3

6
2
3

4
1
3

dy
dt

dy
dx

F x y= ( ), ,
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47. Which of the following d.e.’s is not logistic?

(A) (B)

(C) (D)

(E) f !(t) = kf(t) • [A – f (t)] (where k and A are constants)

48. Suppose P(t) denotes the size of an animal population at time t and its growth is 

described by the d.e. = 0 .002P(1000 – P). The population is growing fastest

(A) initially (B) when P = 500 (C) when P = 1000

(D) when = 0 (E) when 

49. According to Newton’s law of cooling, the temperature of an object decreases at a
rate proportional to the difference between its temperature and that of the surrounding
air. Suppose a corpse at a temperature of 32°C arrives at a mortuary where the tem-
perature is kept at 10°C. Then the differential equation satisfied by the temperature T
of the corpse t hr later is

(A) (B) (C)

(D) (E)

50. If the corpse in Question 49 cools to 27°C in 1 hr, then its temperature (in °C) is
given by the equation

(A) T = 22e0.205t (B) T = 10e1.163t (C) T = 10 + 22e–0.258t

(D) T = 32e–0.169t (E) T = 32 – 10e–0.093t

dT
dt

kT T= −( )32
dT
dt

kT T= − −( )10

dT
dt

e kt= −32
dT
dt

k T= −( )32
dT
dt

k T= − −( )10

d P
dt

2

2 0>dP
dt

dP
dt

dR
dt

R= −0 16 350. ( )
dx
dt

x x= −0 8 0 004 2. .

dy
dt

y y= −0 01 100. ( )′ = −P P P2
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Answer Key
1. C 11. A 21. E 31. C 41. D
2. B 12. C 22. D 32. B 42. B
3. D 13. E 23. B 33. D 43. C
4. B 14. C 24. E 34. B 44. E
5. C 15. B 25. B 35. D 45. D
6. E 16. E 26. D 36. A 46. E
7. B 17. E 27. C 37. A 47. D
8. A 18. A 28. A 38. C 48. B
9. A 19. C 29. E 39. C 49. A

10. E 20. E 30. A 40. A 50. C

Answers Explained
1. (C) v(t) = 2t2 – t + C; v(1) = 3; so C = 2.

2. (B) If a(t) = 20t3 – 6t, then
v(t) = 5t4 – 3t2 + C1,

s(t) = t5 – t3 + C1t + C2,
Since

s(–1) = –1 + 1 – C1 + C2 = 2
and

s(1) = 1 – 1 + C1 + C2 = 4,
therefore

2C2 = 6, C2 = 3,
C1 = 1.

So
v(t) = 5t4 – 3t2 + 1.

3. (D) From Answer 2, s(t) = t5 – t3 + t + 3, so s(0) = C2 = 3.

4. (B) Since a(t) = –32, v(t) = –32t + 40, and the height of the stone 
s(t) = –16t2 + 40t + C. When the stone hits the ground, 4 sec 
later, s(t) = 0, so

0 = –16(16) + 40(4) + C,
C = 96 ft.

5. (C) From Answer 4 
s(t) = –16t2 + 40t + 96.

Then
s!(t) = –32t + 40,

which is zero if t = 5/4, and that yields maximum height, since s "(t) = –32.

6. (E) The velocity v(t) of the car is linear, since its acceleration is constant and

a(t) = 

v(t) = 8.8t + C1 and v(0) = 0,     so C1 = 0;
s(t) = 4.4t2 + C2 and s(0) = 0,     so C2 = 0;

s(10) = 4.4(102) = 440 ft.

dv
dt

= − = =( )
sec

sec
sec

. sec
60 0

10
88
10

8 8 2 mph ft
ft
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7. (B) Since v = 100 – 20t, s = 100t – 10t2 + C with s(0) = 0. So s(1) = 100 – 10 =
90 ft.

8. (A) Since v = –32t + v0 and s = –16t2 + v0t, we solve simultaneously:
0 = –32t + v0,

100 = –16t2 + v0t.
These yield t = 5/2 and v0 = 80 ft/sec.

9. (A) The odometer measures the total trip distance from time t = a to t = b
(whether the car moves forward or backward or reverses its direction one
or more times from t = a to t = b). This total distance is given exactly by 

.

10. (E) (A), (B), (C), and (D) are all true. (E) is false: see Answer 9.

11. (A) Integrating yields + C or y2 = x2 + 2C or y2 = x2 + C !, where 

we have replaced the arbitrary constant 2C by C !. 

12. (C) For initial point (–2,1), x2 – y2 = 3. Rewriting the d.e. ydy = xdx as   

= reveals that the derivative does not exist when y = 0, which 

occurs at x = ± . Since the particular solution must be differentiable in 

an interval containing x = –2, the domain is x < – .

13. (E) We separate variables. ! = !x dx, so ln = + c. The initial 

point yields ln 1 = + c; hence c = –2. With y > 0, the particular 

solution is ln y = – 2, or y = e – 2.

14. (C) We separate variables. !e–ydy = !dx, so –e–y = x + c. The particular solution 

is –e–y = x – 2.

15. (B) The general solution is y = !(9 + x2) (2xdx) = + C; y = 5 

when x = 4 yields C = 0.

16. (E) Since ! = ! , it follows that

ln y = ln x + C or ln y = ln x + ln k;

so y = kx.

17. (E) ! = !dx yields ln = x + c; hence the general solution is y = kex, k | 0.

18. (A) We rewrite and separate variables, getting y = x. The general solution is

y2 = x2 + C or      f (x) = .± +x C2

dy
dx

y
dy
y

dx
x

dy
y

9 2+ x− 1
2

1
2

xx

4

xy− 1
2

1
2

dy
y

3

3

x
y

dy
dx

y x2 2

2 2
=

v t dt( )
 !a

b
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19. (C) We are given that . The general solution is ln = 3 ln + C.

Thus, = c ; y = ± c x3. Since y = 1 when x = 1, we get c = 1.

20. (E) The d.e. = reveals that the derivative does not exist when x = 0. 

Since the particular solution must be differentiable in an interval contain-
ing initial value x = 1, the domain is x > 0.

21. (E) The general solution is y = k ln + C, and the particular solution is 
y = 2 ln + 2.

22. (D) We carefully(!) draw a curve for 
a solution to the d.e. represented 
by the slope field. It will be the 
graph of a member of the family 
y = sin x + C. At the right we 
have superimposed the graph 
of the particular solution 
y = sin x – 0.5.

[–2π, 2π] ¥ [–1.5, 1.5]

23. (B)

[–4, 4] ¥ [–12, 12]

It’s easy to see that the answer must be choice (A), (B), or (C), because the
slope field depends only on x: all the slope segments for a given x are parallel.
Also, the solution curves in the slope field are all concave up, as they are only
for choices (A) and (B). Finally, the solution curves all have a minimum at 
x = 2, which is true only for differential equation (B).

24. (E) The solution curve is y = tan x, which we can obtain from the differential
equation y! = 1 + y2 with the condition y(0) = 0 as follows:

, tan–1 y = x, y = tan x + C.

Since y(0) = 0, C = 0. Verify that (A) through (D) are incorrect.

dy
y

dx
1 2+

=

x
x

3y
x

dy
dx

x3y

xydy
dx

y
x

= 3
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402 AP Calculus

NOTE: In matching slope fields and differential equations in Questions 25–29, keep in mind
that if the slope segments along a vertical line are all parallel, signifying equal slopes for 
a fixed x, then the differential equation can be written as y! = f(x). Replace “vertical” by
“horizontal” and “x” by “y” in the preceding sentence to obtain a differential equation of 
the form y! = g(y).

25. (B) The slope field for y ! = y must by II; it is the only one whose slopes are
equal along a horizontal line.

26. (D) Of the four remaining slope fields, IV is the only one whose slopes are not
equal along either a vertical or a horizontal line (the segments are not par-
allel). Its d.e. therefore cannot be either of type y ! = f (x) or y! = g(y). The
d.e. must be implicitly defined—that is, of the form y ! = F(x, y). So the
answer here is IV.

27. (C) The remaining slope fields, I, III, and V, all have d.e.’s of the type y! = f(x).
The curves “lurking” in III are trigonometric curves—not so in I and V.

28. (A) Given y! = 2x, we immediately obtain the general solution, a family of
parabolas, y = x2 + C. (Trace the parabola in I through (0, 0), for example.)

29. (E) V is the only slope field still unassigned! Furthermore, the slopes “match”
: the slopes are equal “about” the y-axis; slopes are very small 

when x is close to –2 and 2; and is a maximum at x = 0.

30. (A) From Answer 25, we know that the d.e. for slope field II is y ! = y. The gen-
eral solution is y = cex. For a solution curve to pass through point (0, –1),
we have –1 = ce0 and c = –1.

31. (C) Euler’s method for y! = x, starting at (1, 5), with )x = 0.1, yields

x y (SLOPE)* • ∆x = ∆y

1 5 1 • (0.1) = 0.1 *The slope is x.

1.1 5.1 (1.1) • (0.1) = 0.11
1.2 5.21

32. (B) We want to compare the true value of y(1.2) to the estimated value of 
5.21 obtained using Euler’s method in Solution 31. Solving the d.e.   

= x yields y = + C, and initial condition y(1) = 5 means that 

5 = + C, or C = 4.5. Hence y(1.2) = + 4.5 = 5.22 . The error is 

5.22 – 5.21 = 0.01.

33. (D) We separate variables to get csc2 ds = dt. We integrate:

cot = t + C. With t = 0 and s = 1, C = 0. When s = , we get 

cot = t.
3
4
π−

π
2

3
2

π



2

s−
π
2

π



2

s

1 2
2

2.1
2

2

x2

2
dy
dx

e x− 2

e x− 2
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34. (B) Since = cR, = c dt, and ln R = ct + C. When t = 0, R = R0; so 

ln R0 = C or ln R = ct + ln R0. Thus

ln R – ln R0 = ct; ln = ct or = ect.

35. (D) The question gives rise to the differential equation , where 

P = 2P0 when t = 50. We seek for t = 75. We get ln = kt with 

ln 2 = 50k; then

ln ln 2 or .

36. (A) We let S equal the amount present at time t; using S = 40 when t = 0 yields 

ln = kt. Since, when t = 2, S = 10, we get

k = or or –ln 2.

37. (A) We replace g(x) by y and then solve the equation = . We use the 

constraints given to find the particular solution 2 = x or 2 = x.

38. (C) The general solution of = y, or = dx (with y > 0) is ln y = x + C or 

y = cex. For a solution to pass through (2, 3), we have 3 = ce2 and c = 3/e2 !
0.406.

39. (C) At a point of intersection, y! = x + y and x + y = 0. So y! = 0, which 
implies that y has a critical point at the intersection. Since y " = 1 + y! = 
1 + (x + y) = 1 + 0 = 1, y " > 0 and the function has a local minimum at the
point of intersection. [See Figure N9–5, p. 373, showing the slope field for
y! = x + y and the curve y = ex – x – 1 that has a local minimum at (0, 0).]

40. (A) Although there is no elementary function (one made up of polynomial,
trigonometric, or exponential functions or their inverses) that is an anti-
derivative of F!(x) = , we know from the FTC, since F(0) = 0, that

F(x) = dt.

To approximate F(x), use your graphing calculator

For upper limits of integration x = 50 and x = 60, answers are identical to 
10 decimal places. Rounding to three decimal places yields 0.886.

41. (D) See Example 7 on page 376—a counterexample to statement II.

lim
x→ ∞

e t− 2

 "0

x

e x− 2

dy
y

dy
dx

g x( )y

± ydy
dx

ln
1
2

1
2

1
4

ln

S
40

P
P

t

0

502=P
P

t

0 50
=

P
P0

P
P0

dP
dt

kP=

R
R0

R
R0

dR
R

dR
dt
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404 AP Calculus

42. (B) Statement (A) is justified on page 376. Statements (C) and (E) describe
Euler’s method. Statement (D) is illustrated by the examples presented in
the text.

(B) is false. Let y! = c, where c is a constant, and suppose y(0) = 0. Then
Euler’s method yields the solution curve for the linear function y = cx
(which is easy to verify). The exact solution of the given d.e., of course, 
is y = cx.

43. (C) We separate the variables in the given d.e., then solve:

,

ln (y – 68) = –0.11t + c.

Since y(0) = 180, ln 112 = c. Then

,

y = 68 + 112e–0.11t.

When t = 10, y = 68 + 112e–1.1 " 105°F.

44. (E) The solution of the d.e. in Question 43, where y is the temperature of the
coffee at time t, is

y = 68 + 112e–0.11t.

We find t when y = 75°F:

75 = 68 + 112e–0.11t,

,

45. (D) If Q is the concentration at time t, then = –0.30Q. We separate vari-

ables and integrate:

Æ .

We let Q(0) = Q0. Then

Æ Æ .

We now find t when Q = 0.1Q0:

,

.
 
t =

−
ln .

.
0 1
0 3

7
2
3

  hr"

0 1 0 30. .= −e t

Q
Q

e t

0

0 30= − .ln .
Q
Q

t
0

0 30= −ln . lnQ t Q= − +0 30 0

ln .Q t C= − +0 30
dQ
Q

dt= −0 30.

dQ
dt

 
ln ln

.
7 112

0 11
25

−
−

= t    min."

7
112

0 11= −e t.

ln .
y

t
− = −68

112
0 11

dy
y

dt
−

= −
68

0 11.
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Differential Equations 405

46. (E) See page 386 for the characteristics of the logistic model.

47. (D) (A), (B), (C), and (E) are all of the form y ! = ky(a – y).

48. (B) The rate of growth, , is greatest when its derivative is 0 and the curve 

of y ! = is concave down. Since

,

therefore

,

which is equal to 0 if y " = , or 500, animals. The curve of y ! is con-

cave down for all P, since

,

so P = 500 is the maximum population.

49. (A) The description of temperature change here is an example of Case II 
(page 383): the rate of change is proportional to the amount or magnitude
of the quantity present (i.e., the temperature of the corpse) minus a fixed 
constant (the temperature of the mortuary).

50. (C) Since (A) is the correct answer to Question 49, we solve the d.e. in (A)
given the initial condition T(0) = 32:

,

.

Using T(0) = 32, we get ln (22) = C, so

,

.

To find k, we use the given information that T(1) = 27:

27 – 10 = 22e–k,

= e–k,

k = 0.258.

Therefore T = 10 + 22e–0.258t.

17
22

T e kt− = −10 22

ln ( ) lnT kt− = − +10 22

ln ( )T kt C− = − +10
 

dT
T

k dt
-

= -
10

d
dt

d P
dt

2

2 0 004






= − .

2
0 004.

d P
dt

P
2

2 2 0 004= − .

dP
dt

P P= −2 0 002 2.

dP
dt

dP
dt
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A. SEQUENCES OF REAL NUMBERS‡

DEFINITIONS.

An infinite sequence is a function whose domain is the set of positive integers, and 

is often denoted simply by an. The sequence defined, for example, by an = is the

set of numbers 1, , , . . . , , . . . . The elements in this set are called the terms of the 

sequence, and the nth or general term of this sequence is . 

A sequence an converges to a finite number L if an = L.

If an does not have a (finite) limit, we say the sequence is divergent.

EXAMPLE 1

= 0; hence the sequence an = converges to 0.

EXAMPLE 2

; hence an = converges to .3
4

3 5
4 7 9

4

4 2

n
n n

+
− +

3 5
4 7 9

3
4

4

4 2

n
n n

+
− +

=lim
n→ ∞

1
n

1
n

lim
n→ ∞

lim
n→ ∞

1
n

1
n

1
3

1
2

1
n
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‡Topic will not be tested on the AP examination, but some understanding of the notation and terminology is helpful.

Sequences 
and Series

CHAPTER10

Concepts and Skills
In this chapter, we review infinite series for BC Calculus students. Topics include

• tests for determining convergence or divergence,
• functions defined as power series,
• MacLaurin and Taylor series,
• and estimates of errors.
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EXAMPLE 3

1 + = 1; hence an = 1 + converges to 1. Note 

that the terms in the sequence 0, , , , , , . . . are alternately smaller and 

larger than 1. We say this sequence converges to 1 by oscillation.

EXAMPLE 4

Since = h, an = diverges (to infinity).

EXAMPLE 5
Because sin n does not exist, an = sin n diverges. However, note that it does 

not diverge to infinity.

EXAMPLE 6
Because (–1)n+1 does not exist, an = (–1)n+1 diverges. Note that the sequence 

1, –1, 1, –1, . . . diverges because it oscillates.

B. INFINITE SERIES 

B1. Definitions.
If an is a sequence of real numbers, then an infinite series is an expression of the form

The elements in the sum are called terms; an is the nth or general term of the series.

EXAMPLE 7

A series of the form is called a p-series. The p-series for 

p = 2 is

 

1 1
1

1
2

1
3

1
2

1
2 2 2 2k nk=

∞

∑ = + + + + +! !.

1

1 k p
k=

∞

∑

a a a a ak
k

n
=

∞

∑ = + + + + +
1

1 2 3
. . . . . . .

lim
n→ ∞

lim
n→ ∞

n
n

2 1−n
n

2 1−lim
n→ ∞

7
6

4
5

5
4

2
3

3
2

( )−1 n

n
( )−1 n

n
lim
n→ ∞
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EXAMPLE 8
The p-series with p = 1 is called the harmonic series:

EXAMPLE 9
A geometric series has a first term, a, and common ratio of terms, r:

If there is a finite number S such that

then we say that infinite series is convergent, or converges to S, or has the sum S, and we
write, in this case,

When there is no source of confusion, the infinite series (1) may be indicated simply by

EXAMPLE 10
Show that the geometric series

1 + 

converges to 2.

Let S represent the sum of the series; then:

Subtraction yields

.

Hence, S = 2.

1
2

1 1
2 1S

n n= −( )→∞ +lim

1
2

1
2

1
4

1
8

1
2 1S

n n= + + + +



→∞ +lim .. . .

S
n n= + + + + +( )→∞
lim ;1 1

2
1
4

1
8

1
2

. . .

1
2

1
4

1
2

+ + + +. . . . . .
n

a ak n∑ ∑or .

a Sk
k=

∞

∑ =
1

.

lim ,
n k

k

a S
n

→∞ =
∑ =

1

 
ar a ar ar ark

k

n−

=

∞
−= + + + + +∑ 1 2

1

1! !.

1 1
1

1
2

1
3

1

1
k n

k=

∞

∑ = + + + + +! !.
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EXAMPLE 11
Show that the harmonic series

diverges.
The terms in the series can be grouped as follows:

This sum clearly exceeds

which equals

.

Since that sum is not bounded, it follows that diverges to ∞.

B2. Theorems About Convergence or Divergence 
of Infinite Series.
The following theorems are important.

THEOREM 2a. If converges, then an = 0.

This provides a convenient and useful test for divergence, since it is equivalent to the 

statement: If an does not approach zero, then the series diverges. Note, however,

particularly that the converse of Theorem 2a is not true. The condition that an approach
zero is necessary but not sufficient for the convergence of the series. The harmonic series 

is an excellent example of a series whose nth term goes to zero but that diverges 

(see Example 11 above). The series diverges because un = 1, not zero; the

series does not converge (as will be shown shortly) even though an = 0.

THEOREM 2b. A finite number of terms may be added to or deleted from a series
without affecting its convergence or divergence; thus

(where m is any positive integer) both converge or both diverge. (Note that the sums most
likely will differ.)

a ak
k

k
k m= =

∞ ∞

∑ ∑
1

and

lim
n→ ∞

n
n2 1+∑

lim
n→∞

n
n +∑ 1

1
n∑

ak∑

lim
n→∞

ak∑

1
n∑

1
1
2

1
2

1
2

1
2

1
2

+ + + + + + . . .

1
1
2

2
1
4

4
1
8

8
1

16
16

1
32

+ + 



 + 



 + 



 + 



 + . . . ,

 

1
1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
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1
16

1
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1
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+ + +Ê
Ë

ˆ
¯ + + + +Ê

Ë
ˆ
¯ + + + +Ê

Ë
ˆ
¯

+ + +Ê
Ë

ˆ
¯ +

. . .
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1
1
2

1
3

1
4

1+ + + + + +. . . . . .
n
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THEOREM 2c. The terms of a series may be multiplied by a nonzero constant with-
out affecting the convergence or divergence; thus

both converge or both diverge. (Again, the sums will usually differ.)

THEOREM 2d. If and both converge, so does .

THEOREM 2e. If the terms of a convergent series are regrouped, the new series 
converges.

B3. Tests for Convergence of Infinite Series.

THE n th TERM TEST

If an ≠ 0, then diverges. 

(This is the contrapositive of Theorem 2a above; a statement and its contrapositive are
logically equivalent.)

EXAMPLE 12
Does converge or diverge?

Since  ≠ 0, the series diverges by the nth Term Test.

THE GEOMETRIC SERIES TEST

A geometric series converges if and only if |r| < 1. 

If |r| < 1, the sum is .

The series cannot converge unless it passes the nth Term Test; arn = 0 only if 

|r| < 1. As noted earlier, this is a necessary condition for convergence, but may not be suffi-
cient. We now examine the sum using the same technique we employed in Example 10 on
page 409:

 

S a ar ar ar ar

rS ar ar

n

n

n

= + + + + +( )
= +

→∞

→∞

lim ;

lim

2 3 !

22 3 1

11

+ + + +( )
− = −( )

+

→∞

+

ar ar ar

r S a ar

n n

n

n

! ;

( ) lim

== − <

=

= −

→∞

+a ar r

a

S a
r

n

nlim )

;

.

1 1

1

(and remember:

lim
n→∞

a
r1 −

arn∑

n
n2 1+∑lim

n

n
n→∞ + =

2 1
1
2

n
n2 1+∑

an∑lim
n→∞

( )a bn n+∑bn∑an∑

a ca ck
k

k
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∞ ∞

∑ ∑ ≠
1 1

0      and      ( )
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EXAMPLE 13
The series 0.3 + 0.03 + 0.003 + . . . is geometric with a = 0.3 and r = 0.1. Since
|r| < 1, the series converges, and its sum is

NOTE: = 0.333 . . . , which is the given series.

B4. Tests for Convergence of Nonnegative Series.
The series is called a nonnegative series if an ≥ 0 for all n.

THE INTEGRAL TEST

If f(x) is a continuous, positive, decreasing function and f (n) = an, then converges 

if and only if the improper integral f (x) dx converges.

EXAMPLE 14

Does converge?

The associated improper integral is

,

which equals

= h.

The improper integral and the infinite series both diverge.

EXAMPLE 15

Test the series for convergence.

by an application of L’Hôpital’s Rule. Thus converges.
n
en∑

= − + −



 =

→ ∞
lim
b b

b
e e e

1 2 2

1

b

xe dx e xx
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→ ∞
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 !1
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dxx b
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→ ∞
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∞
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→ ∞
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THE p-SERIES TEST

A p-series converges if p > 1, but diverges if p ≤ 1.

This follows immediately from the Integral Test and the behavior of improper

integrals of the form .

EXAMPLE 16

The series is a p-series with p = 3; hence the series 

converges by the p-Series Test.

EXAMPLE 17

diverges, because it is a p-series with p = . 

THE COMPARISON TEST

We compare the general term of , the nonnegative series we are investigating, with 

the general term of a series known to converge or diverge.

(1) If converges and an ! un, then converges.

(2) If diverges and an " un, then diverges.

Any known series can be used for comparison. Particularly useful are p-series,
which converge if p > 1 but diverge if p ! 1, and geometric series, which converge if 
!r! < 1 but diverge if !r! " 1.

EXAMPLE 18
Does converge or diverge?

Since and the p-series converges, converges by 

the Comparison Test.

1
1 4+∑ n

1
4n∑1

1
1

4 4+
<

n n

1
1 4+∑ n

an∑un∑

an∑un∑

an∑

1
2

1
n

∑

 
1 1

2
1
3

1
3 3 3+ + + + +! !

n

1
1 x

dxp

∞

∫

1

1 n p
n=

∞

∑
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EXAMPLE 19

diverges, since

;

the latter is the general term of the divergent p-series , where c = and 

p = .

Remember in using the Comparison Test that you may either discard a finite num-
ber of terms or multiply each term by a nonzero constant without affecting the conver-
gence of the series you are testing.

EXAMPLE 20

converges, since for 

n > 2 and is a convergent geometric series with r = .

THE LIMIT COMPARISION TEST

If is finite and nonzero, then and both converge or both diverge.

This test is useful when the direct comparisons required by the Comparison Test are
difficult to establish. Note that, if the limit is zero or infinite, the test is inconclusive and
some other approach must be used.

EXAMPLE 21
Does converge or diverge?

This series seems to be related to the divergent harmonic series, but 

, so the comparison fails. However, the Limit Comparison Test yields:

Since diverges, also diverges by the Limit Comparison Test.1
2 1n +∑1

n∑

lim lim .
n n

n
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2 1
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THE RATIO TEST

Let = L, if it exists. Then converges if L < 1 and diverges if L > 1. 

If L = 1, this test is inconclusive; apply one of the other tests.

EXAMPLE 22

For ,

Therefore this series converges by the Ratio Test.

EXAMPLE 23

For , we again use the Ratio Test:

and

(See §E2, page 97.) Since e > 1, diverges by the Ratio Test.

EXAMPLE 24

If the Ratio Test is applied to any p-series, , then

and for all p.

But if p > 1 then converges, while if p ! 1 then diverges. This

illustrates the failure of the Ratio Test to resolve the question of convergence
when the limit of the ratio is 1.
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THE n th ROOT TEST

Let = L, if it exists. Then converges if L < 1 and diverges if L > 1. 

If L =1 this test is inconclusive; try one of the other tests.
Note that the decision rule for this test is the same as that for the Ratio Test.

EXAMPLE 25

The series converges by the nth Root Test, since

.

B5. Alternating Series and Absolute Convergence.
Any test that can be applied to a nonnegative series can be used for a series all of whose
terms are negative. We consider here only one type of series with mixed signs, the so-
called alternating series. This has the form:

where ak > 0. The series

is the alternating harmonic series.

THE ALTERNATING SERIES TEST

An alternating series converges if:

(1) an+1 < an for all n, and 

(2) an = 0.

EXAMPLE 26

The alternating harmonic series converges, since 

(1) for all n and 

(2) = 0.1
n
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EXAMPLE 27

The series diverges, since we see that an = is 1,

not 0. (By the nth Term Test, page 411, if an does not approach 0, then does
not converge.)

DEFINITION

A series with mixed signs is said to converge absolutely (or to be absolutely convergent)
if the series obtained by taking the absolute values of its terms converges; that is, 

converges absolutely if converges. 

A series that converges but not absolutely is said to converge conditionally (or to be
conditionally convergent). The alternating harmonic series converges conditionally since
it converges, but does not converge absolutely. (The harmonic series diverges.)

When asked to determine whether an alternating series is absolutely convergent, con-
ditionally convergent, or divergent, it is often advisable to first consider the series of
absolute values. Check first for divergence, using the nth Term Test. If that test shows that
the series may converge, investigate further, using the tests for nonnegative series. If you
find that the series of absolute values converges, then the alternating series is absolutely
convergent. If, however, you find that the series of absolute values diverges, then you’ll
need to use the Alternating Series Test to see whether the series is conditionally convergent.

EXAMPLE 28

Determine whether converges absolutely, converges conditionally, 

or diverges.

We see that , not 0, so by the nth Term Test is 

divergent.

EXAMPLE 29

Determine whether converges absolutely, converges conditionally, or

diverges.

Note that, since ! 1, ; the series passes the nth Term 

Test.
Also,

But is the general term of a convergent p-series (p = 2), so by the Comparison 

Test the nonnegative series converges, and therefore the alternating series con-
verges absolutely.

1
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EXAMPLE 30

Determine whether converges absolutely, converges conditionally, or 

diverges.

is a p-series with p = , so the nonnegative series diverges.

We see that 

and = 0,

so the alternating series converges; hence is conditionally convergent.

APPROXIMATING THE LIMIT OF AN ALTERNATING SERIES

Evaluating the sum of the first n terms of an alternating series, given by , yields  

an approximation of the limit, L. The error (the difference between the approximation
and the true limit) is called the remainder after n terms and is denoted by Rn. When an
alternating series is first shown to pass the Alternating Series Test, it’s easy to place an
upper bound on this remainder. Because the terms alternate in sign and become progres-
sively smaller in magnitude, an alternating series converges on its limit by oscillation, as
shown in Figure N10–1.

FIGURE N10–1
Because carrying out the approximation one more term would once more carry us

beyond L, we see that the error is always less than that next term. Since |Rn| < an+1, the
error bound for an alternating series is the first term omitted or dropped.

EXAMPLE 31

The series passes the Alternating Series Test; hence its sum differs
from the sum

by less than , which is the error bound.1
7
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EXAMPLE 32

How many terms must be summed to approximate to three decimal places the 

value of ?

Since < and = 0, the series converges by the Alternating 

Series Test; therefore after summing a number of terms the remainder (error) will
be less than the first omitted term.

We seek n such that Rn = < 0.001. Thus n must satisfy (n + 1)2 > 1000,

or n > 31.623. Therefore 32 terms are needed for the desired accuracy.

C. POWER SERIES

C1. Definitions; Convergence.
An expression of the form

, (1)

where the a’s are constants, is called a power series in x; and

(2)

is called a power series in (x – a).
If in (1) or (2) x is replaced by a specific real number, then the power series becomes a

series of constants that either converges or diverges. Note that series (1) converges if x = 0
and series (2) converges if x = a.

RADIUS AND INTERVAL OF CONVERGENCE

If power series (1) converges when |x| < r and diverges when |x| > r, then r is called the
radius of convergence. Similarly, r is the radius of convergence of power series (2) if (2)
converges when |x – a| < r and diverges when |x – a| > r.

The set of all values of x for which a power series converges is called its interval of
convergence. To find the interval of convergence, first determine the radius of conver-
gence by applying the Ratio Test to the series of absolute values. Then check each end-
point to determine whether the series converges or diverges there. 
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EXAMPLE 33
Find all x for which the following series converges:

. (3)

By the Ratio Test, the series converges if

< 1.

Thus, the radius of convergence is 1. The endpoints must be tested separately
since the Ratio Test fails when the limit equals 1. When x = 1, (3) becomes 1 + 1
+ 1 + . . . and diverges; when x = –1, (3) becomes 1 – 1 + 1 – 1 + . . . and
diverges. Thus the interval of convergence is –1 < x < 1.

EXAMPLE 34

For what x does converge?

< 1.

The radius of convergence is 1. When x = 1, we have , 

an alternating convergent series; when x = –1, the series is , 

which diverges. Thus, the series converges if –1 < x ! 1.

EXAMPLE 35

converges for all x, since

which is less than 1 for all x. Thus the series converges if –h < x < h.
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EXAMPLE 36
Find all x for which the following series converges:

. (4)

which is less than 1 if !x – 2! < 2, that is, if 0 < x < 4. Series (4) converges on this
interval and diverges if !x – 2! > 2, that is, if x < 0 or x > 4.

When x = 0, (4) is 1 – 1 + 1 – 1 + . . . and diverges. When x = 4, (4) is 1 + 1
+ 1 + . . . and diverges. Thus, the interval of convergence is 0 < x < 4.

EXAMPLE 37

converges only at x = 0, since

unless x = 0.

C2. Functions Defined by Power Series.
Let the function f be defined by

; (1)

its domain is the interval of convergence of the series.
Functions defined by power series behave very much like polynomials, as indicated

by the following properties:

PROPERTY 2a. The function defined by (1) is continuous for each x in the interval
of convergence of the series.

PROPERTY 2b. The series formed by differentiating the terms of series (1) con-
verges to f #(x) for each x within the radius of convergence of (1); that is,

. (2)

Note that power series (1) and its derived series (2) have the same radius of conver-
gence but not necessarily the same interval of convergence.
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EXAMPLE 38
Let

; (3)

then
. (4)

From (3) we see that

;

that
;

and that

and conclude that (3) converges if –1 ! x ! 1.
From (4) we see that

;

that

and that

and conclude that series (4) converges if –1 ! x < 1.
Thus, the series given for f (x) and f #(x) have the same radius of conver-

gence, but their intervals of convergence differ.

PROPERTY 2c. The series obtained by integrating the terms of the given series (1)

converges to f(t) dt for each x within the interval of convergence of (1); that is,
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EXAMPLE 39

Obtain a series for by long division.

Then,
.

It can be shown that the interval of convergence is –1 < x < 1.
Then by Property 2c

= c + x + x2 + x3 + . . . + xn+1 + . . . .

Since when x = 0 we see that c = 1, we have

.

Note that this is a geometric series with ratio r = x and with a = 1; if !x ! < 1, 

its sum is .

C3. Finding a Power Series for a Function: 
Taylor and Maclaurin Series.
If a function f(x) is representable by a power series of the form

on an interval < r, then the coefficients are given by
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The series

. . . 

is called the Taylor series of the function f about the number a. There is never more than
one power series in (x – a) for f(x). It is required that the function and all its derivatives
exist at x = a if the function f(x) is to generate a Taylor series expansion.

When a = 0 we have the special series

,

called the Maclaurin series of the function f; this is the expansion of f about x = 0.

EXAMPLE 40
Find the Maclaurin series for f(x) = ex.

Here f#(x) = ex, . . . , f (n)(x) = ex, . . . , for all n. Then 

f #(0) = 1, . . . ,  f (n)(0) = 1, . . . , 

for all n, making the coefficients cn = :

.

EXAMPLE 41
Find the Maclaurin expansion for f(x) = sin x.

Thus,
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EXAMPLE 42

Find the Maclaurin series for f(x) = .

. .

. .

. .

Then

.

Note that this agrees exactly with the power series in x obtained by different
methods in Example 39.

EXAMPLE 43
Find the Taylor series for the function f(x) = ln x about x = 1.

. .

. .

. .
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COMMON MACLAURIN SERIES

We list here for reference some frequently used Maclaurin series expansions together with
their intervals of convergence:

INTERVAL OF
FUNCTION MACLAURIN SERIES CONVERGENCE

(1)

(2)

(3)

(4)

(5)

FUNCTIONS THAT GENERATE NO SERIES.

Note that the following functions are among those that fail to generate a specific series in
(x – a) because the function and/or one or more derivatives do not exist at x = a:

SERIES IT FAILS
FUNCTION TO GENERATE

ln x about 0
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C4. Approximating Functions with 
Taylor and Maclaurin Polynomials.
The function f(x) at the point x = a is approximated by a Taylor polynomial Pn(x) of order
n:

The Taylor polynomial Pn(x) and its first n derivatives all agree at a with f and its first n
derivatives. The order of a Taylor polynomial is the order of the highest derivative,
which is also the polynomial’s last term.

In the special case where a = 0, the Maclaurin polynomial of order n that approxi-
mates f(x) is

The Taylor polynomial P1(x) at x = 0 is the tangent-line approximation to f(x) near
zero given by

It is the “best” linear approximation to f at 0, discussed at length in Chapter 4 §L.

A NOTE ON ORDER AND DEGREE

A Taylor polynomial has degree n if it has powers of (x – a) up through the nth. If
f (n)(a) = 0, then the degree of Pn(x) is less than n. Note, for instance, in Example 45, that
the second-order polynomial P2(x) for the function sin x (which is identical with P1(x)) is

x + 0 • , or just x, which has degree 1, not 2.

EXAMPLE 44
Find the Taylor polynomial of order 4 at 0 for f(x) = e–x. Use this to approximate
f(0.25).

The first four derivatives are –e–x, e–x, –e–x, and e–x; at a = 0, these equal –1, 1,
–1, and 1 respectively. The approximating Taylor polynomial of order 4 is 
therefore

With x = 0.25 we have

This approximation of e–0.25 is correct to four places.
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In Figure N10–2 we see the graphs of f(x) and of the Taylor polynomials:

[0,1.3] × [0,1]

FIGURE N10–2

Notice how closely P4(x) hugs f(x) even as x approaches 1. Since the series can
be shown to converge for x > 0 by the Alternating Series Test, the error in P4(x) is 

less than the magnitude of the first omitted term, , or at x = 1. In fact, 

P4(1) = 0.375 to three decimal places, close to e–1 $ 0.368.

EXAMPLE 45
(a) Find the Taylor polynomials P1, P3, P5, and P7 at x = 0 for f(x) = sin x.
(b) Graph f and all four polynomials in [–2U,2U] ¥ [–2,2].

(c) Approximate sin using each of the four polynomials.
π
3

1
120

x5

5!

P0(x)

P2(x)

P4(x)

f(x)

P3(x)

P1(x)

 

P x

P x x

P x x
x

P x x
x x

P x x
x x x

0

1

2

2

3

2 3

4

2 3 4

1

1

1
2

1
2 3

1
2 3 4

( ) ;

( ) ;

( )
!

;

( )
! !

;

( )
! ! !

.

=
= -

= - +

= - + -

= - + - +
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(a) The derivatives of the sine function at 0 are given by the following table:

order of
deriv 0 1 2 3 4 5 6 7
deriv of
sin x sin x cos x –sin x –cos x sin x cos x –sin x –cos x
deriv of
sin x at 0 0 1 0 –1 0 1 0 –1

From the table we know that

(b) Figure N10–3a shows the graphs of sin x and the four polynomials. In
Figure N10–3b we see graphs only of sin x and P7(x), to exhibit how closely P7

“follows” the sine curve.

[–2π,2π] × [–2,2] [–2π,2π] × [–2,2]

FIGURE N10–3a FIGURE N10–3b

(c) To four decimal places, sin = 0.8660. Evaluating the polynomials at ,

we get

, , , .

We see that P7 is correct to four decimal places.

P7 3
0 8660π( ) = .P5 3

0 8663π( ) = .P3 3
0 8558π( ) = .P1 3

1 0471π( ) = .

π
3

π
3

P7

sin x

P7
P3

P1 P5

P7P3

sin x

P1
P5

P x x

P x x
x

P x x
x x

P x x
x x x

1

3

3

5

3 5

7

3 5 7

3

3 5

3 5 7
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430 AP Calculus

BC ONLY EXAMPLE 46
(a) Find the Taylor polynomials of degrees 0, 1, 2, and 3 generated by f (x) = ln x
at x = 1.
(b) Graph f and the four polynomials on the same set of axes.
(c) Using P2, approximate ln 1.3, and find a bound on the error.

(a) The derivatives of ln x at x = 1 are given in the table:

order of deriv 0 1 2 3

deriv of ln x ln x

deriv at x = 1 0 1 –1 2

From the table we have

(b) Figure N10–4 shows the graphs of ln x and the four Taylor polynomials
above, in [0,2.5] × [–1,1].

[0,2.5] × [–1,1]

FIGURE N10–4

(c) ln 1.3 ! P2(1.3) = (1.3 – 1) – = 0.3 – 0.045 = 0.255.

For x = 1.3 the Taylor series converges by the Alternating Series Test, so the
error is less than the magnitude of the first omitted term: 
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1 3
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BC ONLYEXAMPLE 47
For what values of x is the approximate formula

correct to three decimal places?
We can use series (4), page 426:

.

Since this is an alternating series with terms decreasing in magnitude and  

approaching 0, the error committed by using the first two terms is less than . 

If < 0.0005, then the given approximation formula will yield accuracy to 

three decimal places. We therefore require that < 0.0015 or that < 0.115.

C5. Taylor’s Formula with Remainder; 
Lagrange Error Bound.
When we approximate a function using a Taylor polynomial, it is important to know how
large the remainder (error) may be. If at the desired value of x the Taylor series is alter-
nating, this issue is easily resolved: the first omitted term serves as an upper bound on
the error. However, when the approximation involves a nonnegative Taylor series, plac-
ing an upper bound on the error is more difficult. This issue is resolved by the Lagrange
remainder. 

TAYLOR’S THEOREM. If a function f and its first (n + 1) derivatives are continuous
on the interval < r, then for each x in this interval

where

and c is some number between a and x. Rn(x) is called the Lagrange remainder.
Note that the equation above expresses f (x) as the sum of the Taylor polynomial

Pn(x) and the error that results when that polynomial is used as an approximation for f(x).
When we truncate a series after the (n + 1)st term, we can compute the error bound

Rn, according to Lagrange, if we know what to substitute for c. In practice we find, not Rn

exactly, but only an upper bound for it by assigning to c the value between a and x that
determines the largest possible value of Rn. Hence:

the Lagrange error bound.

R x
f c x a

nn

n n
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( )( )
( )!
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BC ONLY EXAMPLE 48
Estimate the error in using the Maclaurin series generated by ex to approximate
the value of e.

From Example 40 we know that f(x) = ex generates the Maclaurin series

.

The Lagrange error bound is

.

To estimate e, we use x = 1. For 0 < c < 1, the maximum value of ec is e. Thus:

e $ 1 + 1 + + + . . . +  with error less than .

EXAMPLE 49
Find the Maclaurin series for ln (1 + x) and the associated Lagrange error bound.

. .

. .

. .

Then

where the Lagrange error bound is

.R x
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NOTE: For 0 < x < 1 the Maclaurin series is alternating, and the error bound 

simplifies to Rn(x) < , the first omitted term. The more difficult Lagrange 

error bound applies for –1 < x < 0.

EXAMPLE 50

Find the third-degree Maclaurin polynomial for f(x) = cos , and determine 

the upper bound on the error in estimating f (0.1).
We first make a table of the derivatives, evaluated at x = 0 and giving us the

coefficients.

n f (n)(x) f (n)(0) cn = 

0

1

2

3

Thus P3(x) = .

Since this is not an alternating series for x = 0.1, we must use the Lagrange
error bound:

R3(x) < max , where x = 0.1 and 0 < c < 0.1.

Note that f (4)(c) = cos is decreasing on the interval 0 < c < 0.1, so its 

maximum value occurs at c = 0. Hence:

R x
c

x3
4 44
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2
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C6. Computations with Power Series.
The power series expansions of functions may be treated as any other functions for val-
ues of x that lie within their intervals of convergence. They may be added, subtracted,
multiplied, divided (with division by zero to be avoided), differentiated, or integrated.
These properties provide a valuable approach for many otherwise difficult computations.
Indeed, power series are often very useful for approximating values of functions, evaluat-
ing indeterminate forms of limits, and estimating definite integrals. 

EXAMPLE 51

Compute to four decimal places.

We can use the Maclaurin series,

,

and let x = to get

.

Note that, since this series converges by the Alternating Series Test, R5 is less
than the first term dropped:

,

so = 0.6065, correct to four decimal places.

EXAMPLE 52
Estimate the error if the approximate formula

is used and !x! < 0.02.
We obtain the first few terms of the Maclaurin series generated by f (x) =

:

′′′ =f ( ) .0
3
8

′′′ = + −f x x( ) ( ) .
3
8

1 5 2

′′ = −f ( ) ;0
1
4
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1 1 2
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1 1
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Then
.

Note that for x < 0, the series is not alternating, so we must use the Lagrange error 

bound. Here is , where –0.02 < c < 0.02. With < 0.02, we see 

that the upper bound uses c = –0.02:

EXAMPLE 53

Use series to evaluate .

From series (1), page 426,

.

Then

a well-established result obtained previously.

EXAMPLE 54

Use series to evaluate .

We can use series (4), page 426, and write

EXAMPLE 55

= −1.
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EXAMPLE 56
Show how series may be used to evaluate U.

Since = tan–1 1, a series for tan–1 x may prove helpful. Note that

and that a series for is obtainable easily by long division to yield

.

If we integrate this series term by term and then evaluate the definite integral, we
get

.

(Compare with series (5) on page 426 and note especially that this series 
converges on –1 $ x $ 1.)

For x = 1 we have:

Then

and

Here are some approximations for U using this series:

number of
terms 1 2 5 10 25 50 59 60
approximation 4 2.67 3.34 3.04 3.18 3.12 3.16 3.12

Since the series is alternating, the odd sums are greater, the even ones less, than
the value of U. It is clear that several hundred terms may be required to get even
two-place accuracy. There are series expressions for U that converge much more
rapidly. (See Miscellaneous Free-Response Practice, Problem 12, page 491.)

EXAMPLE 57

Use series to evaluate dx to four decimal places.

Although " dx cannot be expressed in terms of elementary functions, we
can write a series for eu, replace u by (–x2), and integrate term by term. Thus,

,e x
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so

Since this is a convergent alternating series (with terms decreasing in magnitude 

and approaching 0), < , which will not affect the fourth decimal place. 

Then, correct to four decimal places,

.

†C7. Power Series over Complex Numbers.
A complex number is one of the form a + bi, where a and b are real and i 2 = –1. If we
allow complex numbers as replacements for x in power series, we obtain some interest-
ing results.

Consider, for instance, the series

. (1)

When x = yi, then (1) becomes

(2)

Then

(3)

since the series within the parentheses of equation (2) converge respectively to cos y and
sin y. Equation (3) is called Euler’s formula. It follows from (3) that

e U i = –1,

sometimes referred to as Euler’s magic formula.

e y i yyi = +cos sin ,

= − + +
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Chapter Summary
In this chapter, we have reviewed an important BC Calculus topic, infinite series. We
have looked at a variety of tests to determine whether a series converges or diverges. 
We have worked with functions defined as power series, reviewed how to derive Taylor
series, and looked at the Maclaurin series expansions for many commonly used func-
tions. Finally, we have reviewed how to find bounds on the errors that arise when series
are used for approximations.

Practice Exercises
Part A. Directions: Answer these questions without using your calculator.

Note: No questions on sequences will appear on the BC examination. We have neverthe-
less chosen to include the topic in Questions 1–5 because a series and its convergence 
are defined in terms of sequences. Review of sequences will enhance understanding 
of series.

1. Which sequence converges?

(A) an = (B) an = (C) an = 

(D) an = (E) an = 

2. If sn = , then

(A) sn diverges by oscillation (B) sn converges to zero

(C) sn = 1 (D) sn diverges to infinity

(E) None of the above is true.

3. The sequence an = 

(A) is unbounded (B) is monotonic
(C) converges to a number less than 1 (D) is bounded
(E) diverges to infinity

4. Which of the following sequences diverges?

(A) an = (B) an = (C) an = 

(D) an = (E) an = 
n
nln




n
en

2


2n

ne



( )−


+1 1n

n
1
n




sin nπ
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5. The sequence {rn} converges if and only if

(A) !r! < 1 (B) !r! ! 1 (C) –1 < r ! 1
(D) 0 < r < 1 (E) !r! > 1

6. is a series of constants for which un = 0. Which of the following state-

ments is always true?

(A) converges to a finite sum. (B) equals zero.

(C) does not diverge to infinity. (D) is a positive series.

(E) none of these

7. Note that (n " 1). equals

(A) 0 (B) 1 (C) (D) (E) h

8. The sum of the geometric series is

(A) (B) (C) 1 (D) (E)

9. Which of the following statements about series is true?

(A) If un = 0, then converges.

(B) If un | 0, then diverges.

(C) If diverges, then un | 0.

(D) converges if and only if un = 0.

(E) none of these

10. Which of the following series diverges?

(A) (B) (C)

(D) (E) none of thesen

n4 12 −∑

n
n3 1+∑1

2n n+∑1
2n∑

lim
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=

∞
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11. Which of the following series diverges?

(A) (B)

(C) (D)

(E)

12. Let S = ; then S equals

(A) 1 (B) (C) (D) 2 (E) 3

13. Which of the following expansions is impossible?

(A) in powers of x (B) in powers of x

(C) ln x in powers of (x – 1) (D) tan x in powers of 

(E) ln (1 – x) in powers of x

14. The series converges if and only if

(A) x = 0 (B) 2 < x < 4 (C) x = 3 (D) 2 ! x ! 4
(E) x < 2 or x > 4

15. Let f(x) = . The radius of convergence of f(t) dt is

(A) 0 (B) 1 (C) 2 (D) h (E) none of these

16. The coefficient of x4 in the Maclaurin series for f(x) = e–x/2 is

(A) (B) (C) (D) (E)

17. If an appropriate series is used to evaluate dx, then, correct to three

decimal places, the definite integral equals

(A) 0.009 (B) 0.082 (C) 0.098 (D) 0.008 (E) 0.090
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18. If the series tan–1 1 = is used to approximate with an error

less than 0.001, then the smallest number of terms needed is

(A) 100 (B) 200 (C) 300 (D) 400 (E) 500

19. Let f be the Taylor polynomial P7(x) of order 7 for tan–1 x about x = 0. Then it 
follows that, if –1.5 < x < 1.5,

(A) f(x) = tan–1 x
(B) f(x) # tan–1 x
(C) f(x) $ tan–1 x
(D) f(x) > tan–1 x if x < 0 but < tan–1 x if x > 0
(E) f(x) < tan–1 x if x < 0 but > tan–1 x if x > 0

20. Replace the first sentence in Question 19 by “Let f be the Taylor polynomial 
P9(x) of order 9 for tan–1 x about x = 0.” Which choice given in Question 19 
is now the correct one?

Part B. Directions: Some of the following questions require the use of a graphing 
calculator.

21. Which of the following statements about series is false?

(A) , where m is any positive integer.

(B) If converges, so does if c | 0.

(C) If and converge, so does , where c | 0.

(D) If 1000 terms are added to a convergent series, the new series also converges.
(E) Rearranging the terms of a positive convergent series will not affect its conver-

gence or its sum.

22. Which of the following series converges?

(A) (B) (C)

(D) (E)

23. Which of the following series diverges?

(A) (B) (C)

(D) (E)
n

n
n 21=

∞

∑ln n
n

n 21=

∞

∑

1

2 n nn ln=

∞

∑n
nn

+
=

∞

∑ 1

1 !
1

11 n nn ( )+=

∞

∑

2
52n −∑1

10 1n −∑

1
n∑1

n∑1
3 n∑

( )ca bn n+∑bn∑an∑
cun∑un∑

u uk
k

k
k m

=
=

∞

=

∞

∑ ∑
1

π
4

1 1
3

1
5

1
7

− + − + . . .

Sequences and Series 441

BC ONLY

7_3679_APCalc_20Chapter10B  10/3/08  4:31 PM  Page 441



24. For which of the following series does the Ratio Test fail?

(A) (B) (C)

(D) (E)

25. Which of the following alternating series diverges?

(A) (B) (C)

(D) (E)

26. Which of the following statements is true?

(A) If converges, then so does the series .

(B) If a series is truncated after the nth term, then the error is less than the first
term omitted.

(C) If the terms of an alternating series decrease, then the series converges.
(D) If r < 1, then the series converges.
(E) none of these

27. The power series converges if and only if

(A) –1 < x < 1 (B) –1 ! x ! 1 (C) –1 ! x < 1
(D) –1 < x ! 1 (E) x = 0

28. The power series

diverges

(A) for no real x (B) if –2 < x ! 0 (C) if x < –2 or x > 0
(D) if –2 ! x < 0 (E) if x | –1

29. The series obtained by differentiating term by term the series

converges for

(A) 1 ! x ! 3 (B) 1 ! x < 3 (C) 1 < x ! 3
(D) 0 ! x ! 4 (E) none of these

( )
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x
x x x− + − + − + − +2
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( )
( )

!
( )

!
( )

!
x

x x x+ − + + + − + +1
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. . . . . .
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30. The Taylor polynomial of order 3 at x = 0 for f(x) = is

(A) (B)

(C) (D)

(E)

31. The Taylor polynomial of order 3 at x = 1 for ex is

(A)

(B)

(C)

(D)

(E)

32. The coefficient of in the Taylor series about of f(x) = cos x is

(A) (B) (C)

(D) (E)

33. Which of the following series can be used to compute ln 0.8?

(A) ln (x – 1) expanded about x = 0
(B) ln x about x = 0
(C) ln x expanded about x = 1
(D) ln (x – 1) expanded about x = 1
(E) none of these

34. If e–0.1 is computed using a Maclaurin series, then, correct to three decimal places,
it equals

(A) 0.905 (B) 0.950 (C) 0.904
(D) 0.900 (E) 0.949
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35. The coefficient of x2 in the Maclaurin series for esin x is

(A) 0 (B) 1 (C)

(D) –1 (E)

36. Let f(x) = . Suppose both series converge for . Let

x0 be a number such that . Which of the following statements is false?

(A) converges to f(x0) + g(x0).

(B) converges to f(x0)g(x0).

(C) f(x) = is continuous at x = x0.

(D) converges to f %(x0).

(E) none of these

37. The coefficient of (x – 1)5 in the Taylor series for x ln x about x = 1 is

(A) (B) (C) (D) (E)

38. The radius of convergence of the series is

(A) 0 (B) 2 (C) (D) (E) h

39. If the approximate formula sin x = x – is used and !x! < 1 (radian), then the

error is numerically less than

(A) 0.001 (B) 0.003 (C) 0.005 (D) 0.008 (E) 0.009

40. If a suitable series is used, then dx, correct to three decimal places, is

(A) –0.200 (B) 0.180 (C) 0.190 (D) –0.190 (E) –0.990

e
x

x− − 1

 "0

0 2.

x3

3!

e
2

2
e

x n
n

n

n

n

n 21

•
!=

∞

∑

− 1
4!

1
4!

− 1
5!

1
5!

− 1
20

na xn
n

n

−

=

∞

∑ 1

1

a xn
n

n=

∞

∑
0

a x b xn
n

n
n

n

n

( ) ( )0
0

0
0= =

∞ ∞

∑ ∑



















( )( )a b xn n
n

n

+
=

∞

∑ 0
0

x R0 <

x R<a x g x b xn
n

n
n

nn

, ( ) =
==

∞∞

∑∑
00

1
4

1
2!

444 AP Calculus

BC ONLY

7_3679_APCalc_20Chapter10B  10/3/08  4:31 PM  Page 444



41. The function f(x) = and f %(x) = –f(x) for all x. If f(0) = 1, then f(0.2), 

correct to three decimal places, is

(A) 0.905 (B) 1.221 (C) 0.819 (D) 0.820 (E) 1.220

42. The sum of the series is equal to

(A) 0 (B) 1 (C) (D) (E) none of these

43. When is approximated by the sum of its first 300 terms, the error is

closest to

(A) 0.001 (B) 0.002 (C) 0.005 (D) 0.01 (E) 0.02

44. The Taylor polynomial of order 3 at x = 0 for (1 + x) p, where p is a constant, is

(A)

(B)

(C)

(D)

(E) none of these

45. The Taylor series for ln (1 + 2x) about x = 0 is

(A)
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(C)

(D)

(E) 2
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!
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46. The set of all values of x for which converges is

(A) only x = 0 (B) !x ! = 2 (C) –2 < x < 2
(D) !x ! > 2 (E) none of these

47. The third-order Taylor polynomial P3(x) for sin x about is

(A)

(B)

(C)

(D)

(E) 1
2 2 3

1
2 3
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4
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Answer Key
1. B 11. D 21. A 31. D 41. C
2. C 12. D 22. E 32. D 42. D
3. D 13. A 23. C 33. C 43. A
4. E 14. C 24. C 34. A 44. C
5. C 15. B 25. B 35. C 45. A
6. E 16. E 26. E 36. E 46. D
7. B 17. A 27. C 37. A 47. C
8. A 18. E 28. A 38. C
9. B 19. D 29. B 39. E

10. D 20. E 30. B 40. D

Answers Explained

1. (B) an = 

2. (C) Note that = 0.

3. (D) The sine function varies continuously between –1 and 1 inclusive.

4. (E) Note that an = is a sequence of the type sn = r n with !r ! < 1; also that 

lim = 0 by repeated application of L’Hôpital’s rule.

5. (C) = 0 for |r| < 1; = 1 for r = 1.

6. (E) The harmonic series is a counterexample for (A), (B), and (C). 

shows that (D) does not follow.

7. (B) ; so

,

and .

8. (A) .S a
r

= = =
− − −1

2
1

4
31
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n ns
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= 1
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9. (B) Find counterexamples for statements (A), (C), and (D).

10. (D) , the general term of a divergent series.

11. (D) (A), (B), (C), and (E) all converge; (D) is the divergent geometric series
with r = –1.1.

12. (D) .

13. (A) If f(x) = , then f(0) is not defined.

14. (C) (n + 1)(x – 3) = h unless x = 3.

15. (B) The integrated series is or . See Question 27.

16. (E) .

17. (A)

=

= 0.009 to three decimal places.

18. (E) The series satisfies the Alternating Series Test, so the error is less than the 

first term dropped, namely, , or (see (5) on page 426), so 

n $ 500.

19. (D) Note that the Taylor series for tan–1 x satisfies the Alternating Series Test 

and that f(x) = x – = P7(x). If x < 0, then the first omitted 

term, , is negative. Hence P7(x) exceeds tan–1 x. 

20. (E) Now the first omitted term, – , is positive for x < 0. Hence P9(x) is less 

than tan–1 x.

21. (A) If converges, so does , where m is any positive integer; but

their sums are probably different.
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22. (E) Each series given is essentially a p-series. Only in (E) is p > 1.

23. (C) Use the Integral Test on page 412.

24. (C) The limit of the ratio for the series is 1, so this test fails; note for

(E) that

25. (B) does not equal 0.

26. (E) Note the following counterexamples:

(A) (B) (C)

(D)

27. (C) Since , the series converges if !x ! < 1. We must test the end-

points: when x = 1, we get the divergent harmonic series; x = –1 yields the 
convergent alternating harmonic series.

28. (A) = 0 for all x | –1; since the given series converges to 0 if x = –1, 

it therefore converges for all x.

29. (B) The differentiated series is ; so

.

30. (B) See Example 52 on pages 434 and 435.

31. (D) Note that every derivative of ex is e at x = 1. The Taylor series is in powers 

of (x – 1) with coefficients of the form cn = .

32. (D) For f(x) = cos x around x = , c3 = = = .

33. (C) Note that ln q is defined only if q > 0, and that the derivatives must exist at
x = a in the formula for the Taylor series on page 424.

34. (A) Use

;      .

< < 0.0005. Or use the series for ex and let x = –0.1.
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35. (C)
; and sin x = , so

.

Or generate the Maclaurin series for esin x.

36. (E) (A), (B), (C), and (D) are all true statements.

37. (A)

So the coefficient of (x – 1)5 is .

38. (C) =

= =

= .

Since the series converges when < 1, that is, when !x ! < , the

radius of convergence is 

39. (E) The Maclaurin series sin x = x – + – + ··· converges by the 

Alternating Series Test, so the error is less than the first omitted term. 

For x = 1, we have < 0.009.

40. (D)

=

=

= –0.190; the error < < 0.0005.
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41. (C) ; if f(0) = 1, then a0 = 1.

; f %(0) = –f(0) = –1,

so a1 = –1. Since f %(x) = –f(x), f(x) = –f %(x):

identically. Thus,

, ,

, ,

, ,

. .

. .

. .

It is clear, then, that

;

42. (D) Use a calculator to verify that the ratio (of the given geometric series)

equals approximately 0.98. Since the ratio r < 1, the sum of the series equals

or

Simplify to get (D).

43. (A) Since the given series converges by the Alternating Series Test, the error  

is less in absolute value than the first term dropped, that is, less than 

# 0.0011. Choice (A) is closest to this approximation.

44. (C) This polynomial is associated with the binomial series (1 + x) p. Verify that
f(0) = 1, f %(0) = p, f &(0) = p(p – 1), f %&(0) = p(p – 1)(p – 2).

45. (A) The fastest way to find the series for ln(1 + 2x) about x = 0 is to substitute
2x for x in the series
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46. (D) . The series therefore converges if < 1. If x > 0, = ,

which is less than 1 if 2 < x. If x < 0, = , which is less than 1 if 

–2 > x. Now for the endpoints:

x = 2 yields 1 + 1 + 1 + 1 + . . . , which diverges;
x = –2 yields –1 + 1 – 1 + 1 – . . . , which diverges.

The answer is !x ! > 2.

47. (C) The function and its first three derivatives at are sin ; 

cos ; –sin ; and –cos . P3(x) is choice C.π = −
4

1
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These questions provide further practice for Parts A and B of Section I of the 
examination. Answers begin on page 470.

Part A. Directions: Answer these questions without using your calculator.

1. Which of the following functions is continuous at x = 0?

(A) (B) f (x) = [x] (greatest-integer function)

(C) (D)

(E)

2. Which of the following statements about the graph of y = is not true?

(A) The graph is symmetric to the y-axis.
(B) The graph has two vertical asymptotes.
(C) There is no y-intercept.
(D) The graph has one horizontal asymptote.
(E) There is no x-intercept.

3. ([x] – |x|) = 

(A) !1 (B) 0 (C) 1 (D) 2 (E) none of these

4. The x-coordinate of the point on the curve y = x2 ! 2x " 3 at which the tangent is
perpendicular to the line x " 3y " 3 = 0 is

(A) ! (B) ! (C) (D) (E) none of these
5
2

7
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1
2

5
2

lim
x→ −1

x
x
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1
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−

f x
x

x
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5. is

(A) !3 (B) !1 (C) 1 (D) 3 (E) nonexistent

6. ln (3e x " 2) ! ln (3ex ) = 

(A) 2 (B) e2 (C) 2 ln 3 (D) ln 3 " 2 (E) 2 ln 3 " 2

7.

(A) 6 (B) 8 (C) 10 (D) 11 (E) 12

8. is

(A) – (B) (C) 1 (D) 3 (E) nonexistent

9. The maximum value of the function f (x) = x4 ! 4x3 " 6 on the closed interval 
[1, 4] is

(A) 1 (B) 0 (C) 3 (D) 6 (E) none of these

10. Let if x ≠ 5, and let f be continuous at x = 5. Then c = 

(A) – (B) 0 (C) (D) 1 (E) 6

11.

(A) !1 (B) – (C) 0 (D) (E) 1

12. If sin x = ln y and 0 # x # $, then, in terms of x, equals

(A) esin x cos x (B) e!sin x cos x (C)

(D) ecos x (E) esin x

13. If f(x) = x cos x, then f ′ equals

(A) (B) 0 (C) !1 (D) – (E) 1
π
2

π
2

π
2







e
x

xsin

cos

dy
dx

1
3

1
3

cos sin2
0

π / 2
∫ =x x dx
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14. The equation of the tangent to the curve y = ex ln x, where x = 1, is

(A) y = ex (B) y = ex " 1 (C) y = e(x ! 1)
(D) y = ex " 1 (E) y = x ! 1

15. If the displacement from the origin of a particle moving along the x-axis is given by 
s = 3 " (t ! 2)4, then the number of times the particle reverses direction is

(A) 0 (B) 1 (C) 2 (D) 3 (E) none of these

16. equals

(A) 1 ! e (B) (C) e ! 1 (D) (E) e " 1

17. If , then equals

(A) 7 (B) (C) (D) 9 (E)

18. If the position of a particle on a line at time t is given by s = t3 " 3t, then the speed
of the particle is decreasing when

(A) !1 # t # 1 (B) !1 # t # 0 (C) t # 0
(D) t % 0 (E) ÙtÙ % 1

19. A rectangle with one side on the x-axis is inscribed in the triangle formed by the
lines y = x, y = 0, and 2x " y = 12. The area of the largest such rectangle is

(A) 6 (B) 3 (C) (D) 5 (E) 7

20. The abscissa of the first-quadrant point that is on the curve of x2 ! y2 = 1 and 
closest to the point (3, 0) is

(A) 1 (B) (C) 2 (D) 3 (E) none of these

21. If is

(A) (B) (C)

(D) (E)

22. The region bounded by the parabolas y = x2 and y = 6x ! x2 is rotated about the 
x-axis so that a vertical line segment cut off by the curves generates a ring. The 
value of x for which the ring of largest area is obtained is

(A) 4 (B) 3 (C) (D) 2 (E)
3
2

5
2

−
+
1

16 4 1 2( )x

−
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16

4 1 2( )x

−
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4

4 1 2( )x
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23. equals

(A) ln (ln x) ! C (B) – + C (C) + C

(D) ln x ! C (E) none of these

24. The volume obtained by rotating the region bounded by x = y2 and x = 2 " y2 about

the y-axis is equal to

(A) (B) (C) (D) (E)

25. The general solution of the differential equation is a family of

(A) straight lines (B) circles (C) hyperbolas
(D) parabolas (E) ellipses

26. Estimate using the Left Rectangular Rule and two subintervals 

of equal width.

(A) (B) (C)

(D) (E)

27.

(A) "2 (B) (C) 0 (D) (E)

28.

(A) 0 (B) (C) (D) (E) #

29.

(A) 0 (B) (C) 1 (D) 2 (E) #

30. The number of values of k for which f (x) = ex and g(x) = k sin x have a common
point of tangency is

(A) 0 (B) 1 (C) 2 (D) large but finite (E) infinite

1
2

lim
tan( / )

h

h
h→

+ − =
0

4 1π

3
2

2
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lim
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31. The curve 2x2 y ! y2 = 2x ! 13 passes through (3, 1). Use the line tangent to the
curve there to find the approximate value of y at x = 2.8.

(A) 0.5 (B) 0.9 (C) 0.95 (D) 1.1 (E) 1.4

32.

(A) (B) (C)

(D) (E)

33. The region bounded by y = tan x, y = 0, and is rotated about the x-axis. The 
volume generated equals

(A) (B) (C)

(D) (E) none of these

34. , for the constant a $ 0, equals

(A) 1 (B) a (C) ln a (D) log
10

a (E) a ln a

35. Solutions of the differential equation whose slope field is shown here are most likely
to be

(A) quadratic (B) cubic (C) sinusoidal
(D) exponential (E) logarithmic

36.

(A) 0 (B) 1 (C) (D) (E)
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37. The graph of g, shown below, consists of the arcs of two quarter-circles and two 

straight-line segments. The value of is

(A) π + 2 (B) (C)

(D) (E)

38. Which of these could be a particular solution of the differential equation whose slope
field is shown here?

(A) (B) y = ln x (C) y = ex (D) y = e-x (E) y = ex2

39. What is the domain of the particular solution for = containing the point 

where x = –1?

(A) x < 0 (B) x > –2 (C) –2 < x < 2
(D) x ≠ ±2 (E) none of these; no solution exists for x = –1

6
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40. The slope field shown here is for the differential equation

(A) (B) y¢ = ln x (C) y¢ = ex (D) y¢ = y (E) y¢ = -y2

41. If we substitute x = tan %, which of the following is equivalent to ?

(A) (B) (C)

(D) (E)

42. If x = 2 sin u and y = cos 2u, then a single equation in x and y is

(A) x2 ! y2 = 1 (B) x2 ! 4y2 = 4 (C) x2 ! 2y = 2
(D) x2 ! y2 = 4 (E) x2 " 2y = 2

43. The area bounded by the lemniscate with polar equation r 2 = 2 cos 2% is equal to

(A) 4 (B) 1 (C) (D) 2 (E) none of these

44.

(A) 0 (B) (C) π (D) 2π (E) none of these

45. The first four terms of the Maclaurin series (the Taylor series about x = 0) for 

are

(A) 1 ! 2x ! 4x2 ! 8x3 (B) 1 " 2x ! 4x2 " 8x3

(C) " 1 " 2x " 4x2 " 8x3 (D) 1 " x ! x2 " x3

(E) 1 ! x ! x2 ! x3

46.

(A) (B) (C) "x2e"x ! 2xe"x ! C

(D) "x2e"x " 2xe"x " 2e"x ! C (E) "x2e"x ! 2xe"x " 2e"x ! C
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3x e Cx1
3

3x e Cx− +
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47. is equal to

(A) (B) (C) (D) (E)

48. A curve is given parametrically by the equations x = t, y = 1 " cos t. The area bound-
ed by the curve and the x-axis on the interval 0 & t & 2' is equal to

(A) 2(' ! 1) (B) ' (C) 4' (D) ' ! 1 (E) 2'

49. If x = a cot % and y = a sin2 %, then , when % = , is equal to

(A) (B) "1 (C) 2 (D) (E)

50. Which of the following improper integrals diverges?

(A) (B) (C)

(D) (E)

51. equals

(A) (B) (C) (D) (E)

52. is

(A) "# (B) 0 (C) 1 (D) # (E) nonexistent

53. A particle moves along the parabola x = 3y " y2 so that = 3 at all time t. 

The speed of the particle when it is at position (2, 1) is equal to

(A) 0 (B) 3 (C) (D) (E) none of these

54.

(A) "# (B) "1 (C) 0 (D) 1 (E) #

55. When rewritten as partial fractions, includes which of the following?

I. II. III.

(A) none (B) I only (C) II only (D) III only (E) I and III

2
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56. Using two terms of an appropriate Maclaurin series, estimate .

(A) (B) (C) (D)

(E) undefined; the integral is improper

57. The slope of the spiral r = % at % = is

(A) (B) "1 (C) 1 (D) (E) undefined

Part B. Directions: Some of these questions require the use of a graphing calculator.

58. The graph of function h is shown here. Which of these 
statements is (are) true?

I. The first derivative is never negative.
II. The second derivative is constant.

III. The first and second derivatives equal 0 at the 
same point. 

(A) I only (B) III only (C) I and II
(D) I and III (E) all three

59. Graphs of functions f (x), g(x), and h(x) are shown below. 

Consider the following statements:

I.
II.

III.

Which of these statements is (are) true?

(A) I only (B) II only (C) II and III only
(D) all three (E) none of these

h x g x( ) ( )= ′′
f x g x( ) ( )= ′
g x f x( ) ( )= ′
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60.

(A) (B) (C)

(D) (E) 0

61.

(A) -6 (B) -5 (C) 5 (D) 6 (E) 7

62. At what point in the interval [1, 1.5] is the rate of change of f(x) = sin x equal to its
average rate of change on the interval?

(A) 0.995 (B) 1.058 (C) 1.239 (D) 1.253 (E) 1.399

63. Suppose f ((x) = x2 (x " 1). Then f )(x) = x (3x " 2). Over which interval(s) is the
graph of f both increasing and concave up?

I. x * 0 II. III. IV. x $ 1

(A) I only (B) II only (C) II and IV
(D) I and III (E) IV only

64. Which of the following statements is true about the graph of f (x) in Question 62?

(A) The graph has no relative extrema.
(B) The graph has one relative extremum and one inflection point.
(C) The graph has two relative extrema and one inflection point.
(D) The graph has two relative extrema and two inflection points.
(E) None of the preceding statements is true.

65. The nth derivative of ln (x ! 1) at x = 2 equals

(A) (B) (C)

(D) (E)

66. If f (x) is continuous at the point where x = a, which of the following statements 
may be false?

(A) f(x) exists. (B) f(x) = f(a). (C) f ((a) exists.

(D) f (a) is defined. (E) f(x) = f(x).lim
x a→ +

lim
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lim
x a→

lim
x a→
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67. Suppose , where k is a constant. Then equals

(A) 3 (B) 4 " k (C) 4 (D) 4 ! k (E) none of these

68. The volume, in cubic feet, of an “inner tube” with inner diameter 4 ft and outer 
diameter 8 ft is

(A) 4π2 (B) 12π2 (C) 8π2 (D) 24π2 (E) 6π2

69. If f (u) = tan"1 u2 and g(u) = eu, then the derivative of f (g (u)) is

(A) (B) (C)

(D) (E)

70. If sin (xy) = y, then equals

(A) sec (xy) (B) y cos (xy) " 1 (C)

(D) (E) cos (xy)

71. Let x $ 0. Suppose and ; then 

(A) f (x4) (B) f (x2) (C) 2xg(x2)

(D) (E) 2g(x2) ! 4x2 f (x)

72. The region bounded by y = ex, y = 1, and x = 2 is rotated about the x-axis. The 
volume of the solid generated is given by the integral

(A) (B) (C)

(D) (E)

73. Suppose the function f is continuous on 1 & x & 2, that f ((x) exists on 1 * x * 2,
that f (1) = 3, and that f (2) = 0. Which of the following statements is not necessarily
true?

(A) The Mean-Value Theorem applies to f on 1 & x & 2.

(B) exists.

(C) There exists a number c in the closed interval [1, 2] such that f ((c) = 0.
(D) If k is any number between 0 and 3, there is a number c between 1 and 2 

such that f (c) = k.
(E) If c is any number such that 1 * c * 2, then f(x) exists.lim

x c→
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74. The region S in the figure is bounded by y = sec x, the y–axis, and y = 4. What is the
volume of the solid formed when S is rotated about the y-axis?

(A) 0.791 (B) 2.279 (C) 5.692 (D) 11.385 (E) 17.217

75. If 40 g of a radioactive substance decomposes to 20 g in 2 yr, then, to the nearest
gram, the amount left after 3 yr is

(A) 10 (B) 12 (C) 14 (D) 16 (E) 17

76. An object in motion along a line has acceleration a(t) = and is at rest 

when t = 1. Its average velocity from t = 0 to t = 2 is

(A) 0.362 (B) 0.274 (C) 3.504 (D) 7.008 (E) 8.497

77. Find the area bounded by y = tan x and x ! y = 2, and above the x-axis on the 
interval [0, 2].

(A) 0.919 (B) 0.923 (C) 1.013 (D) 1.077 (E) 1.494

78. An ellipse has major axis 20 and minor axis 10. Rounded off to the nearest integer,
the maximum area of an inscribed rectangle is

(A) 50 (B) 79 (C) 80 (D) 82 (E) 100

79. The average value of y = x ln x on the interval 1 & x & e is

(A) 0.772 (B) 1.221 (C) 1.359 (D) 1.790 (E) 2.097

80. Let f(x) = for 0 & x & 2'. On which interval is f increasing?

(A) 0 * x * ' (B) 0.654 * x * 5.629 (C) 0.654 * x * 2'
(D) ' * x * 2' (E) none of these

81. The table shows the speed of an object (in ft/sec) during a 3-sec period. Estimate its
acceleration (in ft/sec2) at t = 1.5 sec.

(A) "17 (B) "13 (C) "10 (D) "5 (E) 17

( cos )1 2 3
0

−∫ t dt
x

πt
t

+
+
2

1 2

x

y

0

y = 4

(x,4)

(x,y)Dy

464 AP Calculus

time, sec 00 01 02 3

speed, ft/sec 30 22 12 0

7_4324_APCalc_21Chapter11  10/4/09  5:08 PM  Page 464



82. A maple-syrup storage tank 16 ft high hangs on a wall. The back is in the shape of
the parabola y = x2 and all cross sections parallel to the floor are squares. If syrup is
pouring in at the rate of 12 ft3/hr, how fast (in ft/hr) is the syrup level rising when it
is 9 ft deep?

(A) (B) (C) (D) 36 (E) 162

83. In a protected area (no predators, no hunters), the deer population increases at a rate 

of , where P(t) represents the population of deer at t yr. If 300 

deer were originally placed in the area and a census showed the population had
grown to 500 in 5 yr, how many deer will there be after 10 yr?

(A) 608 (B) 643 (C) 700 (D) 833 (E) 892

84. Shown is the graph of f(x) = .

Let The local linearization of H at x = 1 is H(x) equals

(A) 2x (B) "2x " 4 (C) 2x ! π " 2
(D) "2x ! π ! 2 (E) 2x ! ln 16 ! 2

H x f t dt
x( ) = ( )∫0

.

t

f

4

12x +

dP
dt

k P= −( )1000

4
3

1
3

2
27
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85. A smokestack 100 ft tall is used to treat industrial emissions. The diameters, 
measured at 25-ft intervals, are shown in the table. Using the midpoint rule, 
estimate the volume of the smokestack to the nearest 100 ft3.

(A) 8100 (B) 9500 (C) 9800 (D) 12,500 (E) 39,300

For Questions 86–90 the table shows the values of differentiable functions f and g.

86. If P(x) = , then P((3) = 

(A) "2 (B) (C) (D) (E) 2

87. If H(x) = f (g (x)), then H((3) = 

(A) 1 (B) 2 (C) 3 (D) 6 (E) 9

88. If M(x) = f (x) . g (x), then M((3) = 

(A) 2 (B) 6 (C) 8 (D) 14 (E) 16

89. If K(x) = g"1(x), then K((3) = 

(A) (B) (C) (D) (E) 2
1
2

1
3

− 1
3

− 1
2

2
3

− 1
2

− 8
9

f x
g x

( )
( )
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90. If , then R((3) = 

(A) (B) (C) (D) (E) 2

91. Water is poured into a spherical tank at a constant rate. If W(t) is the rate of increase
of the depth of the water, then W is

(A) constant (B) linear and increasing (C) linear and decreasing
(D) concave up (E) concave down

92. The graph of f ( is shown below. If f (7) = 3 then f (1) =

(A) "10 (B) "4 (C) "3 (D) 10 (E) 16

93. At an outdoor concert, the crowd stands in front of the stage filling a semicircular
disk of radius 100 yd. The approximate density of the crowd x yd from the stage 
is given by

people per square yard. About how many people are at the concert?

(A) 200 (B) 19,500 (C) 21,000 (D) 165,000 (E) 591,000

94. The Centers for Disease Control announced that, although more AIDS cases were 
reported this year, the rate of increase is slowing down. If we graph the number of
AIDS cases as a function of time, the curve is currently

(A) increasing and linear
(B) increasing and concave down
(C) increasing and concave up
(D) decreasing and concave down
(E) decreasing and concave up

dy001

stage

D x
x

( ) =
+

20

2 1

x

f ′

4
(5,4)

(7,2)

(2,–2)

2

–2

2 4 6 8

f ′

2
1
2

1

2 2

1
4

R x f x( ) ( )=
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The graph below is for Questions 95–97. It shows the velocity, in feet per second, 
for 0 * t * 8, of an object moving along a straight line.

95. The object’s average speed (in ft/sec) for this 8-sec interval was

(A) 0 (B) (C) 1 (D) (E) 8

96. When did the object return to the position it occupied at t = 2?

(A) t = 4 (B) t = 5 (C) t = 6 (D) t = 8 (E) never

97. The object’s average acceleration (in ft/sec2) for this 8-sec interval was

(A) "2 (B) (C) 0 (D) (E) 1

98. If a block of ice melts at the rate of cm3/min, how much ice melts during the

first 3 min?

(A) 8 cm3 (B) 16 cm3 (C) 21 cm3 (D) 40 cm3 (E) 79 cm3

99. A particle moves counterclockwise on the circle x2 ! y2 = 25 with a constant speed of
2 ft/sec. Its velocity vector, v, when the particle is at (3, 4), equals

(A) (B) (C)

(D) (E)

100. Let R = a cos kti ! a sin ktj be the (position) vector xi ! yj from the origin to 
a moving point P(x, y) at time t, where a and k are positive constants. The 
acceleration vector, a, equals

(A) "k2 R (B) a2 k2 R (C) "aR
(D) "ak2 (cos ti ! sin tj) (E) "R

101. The length of the curve y = 2x between (0, 1) and (2, 4) is

(A) 3.141 (B) 3.664 (C) 4.823 (D) 5.000 (E) 7.199

 - -( )2 2 i j2 2 3i j-

- +2 3 2i j
1
5

8 6i j-( )- -( )1
5

8 6i j

72
2 3t +

1
4

− 1
4

8
3

3
8

t (sec)

v(ft/sec)

2

(3,2)

(6,–1) (8,–1)

(2,1)
1

–1

–2

2 4 6 8
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102. The position of a moving object is given by P(t) = (3t, et ). Its acceleration is

(A) undefined
(B) constant in both magnitude and direction
(C) constant in magnitude only
(D) constant in direction only
(E) constant in neither magnitude nor direction

103. Suppose we plot a particular solution of = 4y from initial point (0, 1) using

Euler’s method. After one step of size +x = 0.1, how big is the error?

(A) 0.09 (B) 1.09 (C) 1.49 (D) 1.90 (E) 2.65

104. We use the first three terms to estimate . Which of the following 

statements is (are) true?

I. The estimate is 0.7.
II. The estimate is too low.

III. The estimate is off by less than 0.1.

(A) I only (B) III only (C) I and II
(D) I and III (E) all three

105. Which of these diverges?

(A) (B) (C)

(D) (E)

106. Find the radius of convergence of .

(A) 0 (B) (C) 1 (D) e (E) #

107. When we use to estimate , the Lagrange remainder is no 

greater than

(A) 0.021 (B) 0.034 (C) 0.042 (D) 0.067 (E) 0.742

108. An object in motion along a curve has position P(t) = (tan t, cos 2t) for 0 , t , 1.
How far does it travel?

(A) 0.96 (B) 1.73 (C) 2.10 (D) 2.14 (E) 3.98

e
 
e x

xx ! 1
2

2

+ +

1
e

n

n
xn

n

n!

=

∞

∑
1

2

31

n
n

n=

∞

∑2
3

1 nn=

∞

∑

2
31 nn=

∞

∑2
31





=

∞

∑
n

n
2

31
n

n=

∞

∑

( )−
+=

∞

∑ 1

12
0

n

n n

dy
dx
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Answer Key
1. D 23. A 45. A 67. C 189. E
2. C 24. A 46. D 68. E 190. C
3. A 25. E 47. E 69. D 191. D
4. D 26. E 48. E 70. D 192. B
5. A 27. E 49. D 71. E 193. B
6. A 28. D 50. C 72. C 194. B
7. C 29. D 51. D 73. C 195. C
8. A 30. E 52. C 74. D 196. E
9. D 31. D 53. D 75. C 197. B

10. C 32. C 54. A 76. A 198. D
11. D 33. A 55. E 77. D 199. A
12. A 34. C 56. B 78. E 100. A
13. D 35. E 57. D 79. B 101. B
14. C 36. D 58. D 80. B 102. D
15. B 37. B 59. C 81. C 103. A
16. C 38. C 60. A 82. B 104. D
17. C 39. C 61. D 83. B 105. C
18. C 40. A 62. D 84. C 106. D
19. A 41. D 63. E 85. C 107. B
20. B 42. C 64. E 86. A 108. D
21. D 43. D 65. C 87. C
22. D 44. C 66. C 88. E

Answers Explained

Part A

1. (D) If f(x) = for and f(0), then

;

thus this function is continuous at 0. In (A), does not exist; in (B), 

f has a jump discontinuity; in (C), f has a removable discontinuity; and in
(E), f has a removable discontinuity.

2. (C) To find the y-intercept, let x = 0; y = "1.

3. (A) = 0 " 1 = "1.

4. (D) The line x ! 3y ! 3 = 0 has slope ; a line perpendicular to it has slope 3. 

The slope of the tangent to y = x2 " 2x ! 3 at any point is the derivative 
2x " 2. Set 2x " 2 equal to 3.

− 1
3

lim lim
x x

x x
→ →− −

[ ] −
1 1

lim sin
x x→0

1

lim ( ) ( )
x

f x f
→

= =
0

0 0

x ≠ 0x
x

sin
1
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5. (A) is f &(1), where f(x) = , f &(x) = . Or simplify the given 

fraction to .

6. (A) ln ! ln = ln = ln e2 = 2 ln e = 2.

7. (C)

7. C. = 8 + [(18 - 24) - (8 - 16)] = 8 + (-6 + 8) = 10.

Save time by finding the area under y = |x – 4| from a sketch!

8. (A) Since the degrees of numerator and denominator are the same, the limit as

xÆ' is the ratio of the coefficients of the terms of highest degree: .

9. (D) On the interval [1, 4], f &(x) = 0 only for x = 3. Since f (3) is a relative 
minimum, check the endpoints to find that f (4) = 6 is the absolute 
maximum of the function.

10. (C) To find lim f as x Æ 5 (if it exists), multiply f by .

f(x) = 

and if this equals . So lim f (x) as x Æ 5 is . For f to be 

continuous at x = 5, f (5) or c must also equal .

11. (D) Evaluate .

12. (A) cos x = and thus = y cos x. From the equation given, y = esin x.dy
dx

dy
dx

1
y

− 1
3

3
2

cos
/

x
0

π

1
6

1
6

1
4 3x + +

x ≠ 5

x

x x

−
−( ) + +( )

5

5 4 3

x

x

+ +
+ +

4 3
4 3

−2
4

x

y

0

y =   x – 4 

(6,2)

4

4

6

x dx x dx x dx x
x− = −( ) + −( ) = −



∫ ∫ ∫4 4 4 4
20

6

0

4

4

6 2 


+ −






0

4 2

4

6

2
4

x
x

3
3

2e
e

x

x

+
3ex( )3 2ex+( )

3 3
1

3 1
1

3
1

−
−( ) =

−( )
−( ) = − ≠( )x

x x
x

x x x
x

− 3
2x

3
x

lim
x

x
x→

−

−1

3
3

1
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13. (D) If f(x) = x cos x, then f ′(x) = –x sin x + cos x, and

= .

14. (C) If y = ex ln x, then = ln x, which equals e when x = 1. Since 

also y = 0 when x = 1, the equation of the tangent is y = e(x ! 1).

15. (B) v = 4(t ! 2)3 and changes sign exactly once, when t = 2.

16. (C) Evaluate .

17. (C) .

18. (C) Since v = 3t2 " 3, it is always positive, while a = 6t and is positive for 
t % 0 but negative for t # 0. The speed therefore increases for t % 0 but 
decreases for t # 0.

19. (A) Note from the figure that the area, A, of a typical rectangle is

.

For y = 2, = 0. Note that is always negative.

20. (B) If S represents the square of the distance from (3, 0) to a point (x, y) on the

curve, then S = (3 ! x)2 " y2 = (3 – x)2 + (x2 – 1). Setting = 0 yields the 

minimum distance at x = .3
2

dS
dx

d A
dy

2

2
dA
dy

x

y

0 (6,0)

2x + y = 12

y = x

(x1,y)
(x2,y)

A x x y
y

y y y
y= −( ) = − −



 = −2 1

212
2

6
3
2

• •

f x dx x dx x x dx
x( ) = + −( ) = +

− − −∫ ∫∫1

4 2 2
2

4

1

2 3

1

2
4

3
22

3
2

3

2

4
x

x−







− −
−

e x

1

0

e
x

e
x

x+
dy
dx

 
− +π

2
1 0i′ 



f

π
2
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21. (D) = = , so = 

22. (D) See the figure. Since the area, A, of the ring equals π (y
2

2 ! y
1

2),

A = π [(6x ! x2)2 ! x4] = π [36x2 ! 12x3 " x4 ! x4]

and = π (72x ! 36x2) = 36πx (2 ! x).

It can be verified that x = 2 produces the maximum area.

23. (A) This is of type with u = ln x: .

x

y

0

x2  = 2 –  y
2

x1  =  y
2

∆ y

(1,1)

(1,–1)

(x2,y)(x1,y)

1
x

dx

xln∫du
u∫

x

y

0 (6,0)

(x,y2)

(x,y1)

y = 6x – x2

y = x2

dA
dx

 
4 1 4 1 42− +( )( )−x i

d y
dx

2

24 4 1 1x +( )−4
4 1x +

dy
dx
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24. (A) About the y-axis; see the figure. Washer.

∆V = π (x
2

2 ! x
1

2) ∆y, so V = 2π = 2π

25. (E) Separating variables, we get y dy = (1 ! 2x) dx. Integrating gives

y2 = x ! x2 + C

or

y2 = 2x ! 2x2 " k

or

2x2 " y2 ! 2x = k.

26. (E) 2(5) + .

27. (E) = .

28. (D) Use L’Hôpital’s Rule or rewrite the expression as .

29. (D) For f(x) = tan x, this is f ′ = sec2 .

30. (E) The parameter k determines the amplitude of the sine curve. For f = k sin x
and g = ex to have a common point of tangency, say at x = q, the curves
must both go through (q, y) and their slopes must be equal at q. Thus, we
must have

k sin q = eq and  k cos q = eq,
and therefore

sin q = cos q.

Thus, q = and k = .

The figure shows k
1

= and k
2

= – .2 3 4e− π /2 4eπ /

e

n

q

sin π
4

π±





π π
4

± n

π
4







π
4







lim sin
cosx

x
x x→∞

· ·3
3

1
3

3
2

− ( )1
0

7

π
πcos x

1
0

7

π
π πsin x dx∫ ( )

x

y

2 2

5

2 21

1
2

( )4 4 2
0

1
−∫ y dy( )2 2 2 4

0

1
− − ∫ y y dy
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31. (D) We differentiate implicitly to find the slope :

2 +2y = 2,

= .

At (3, 1), = – . The linearization is y .

32. (C)

73. C. .

33. (A) About the x-axis. Disk.

,

V = 

= π .

34. (C) Let f(x) = ax; then 

35. (E) is a function of x alone; curves appear to be asymptotic to the y-axis

and to increase more slowly as |x| increases.

dy
dx

 
lim lim ln ln .
h

h

h

ha
h

a a
h

f a a a
Æ Æ

+- = - = ¢( ) = =
0 0

0 0
01

0

 
1

4
−( )!

π π π
0

π /4

0

π /4
tan sec tan2 2 1x dx x dx x x= −( ) = −[∫ ∫ ]]

0

π /4

∆ = ∆V y xπ 2

= − = − +∫ ∫cos sin cos sin
sin

x dx x x dx x
x

C·2
3

3

cos cos cos sin cos3 2 21x dx x x dx x x·∫ ∫ ∫= = −( ) ddx

 
! − −( ) +1

2
3 1x

1
2

dy
dx

1 2
2

−
+
xy

x y

dy
dx

dy
dx

x
dy
dx

xy2 2+





dy
dx

y = e x

y = k2 sin x

y = k1 sin x

 k1 =    π/4

 k2 ="
     

–3π/42e

2e
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36. (D) The given limit is equivalent to

,

where . The answer is .

37. (B) = 

= 4π " 3 " .

38. (C) In the figure, the curve for y= ex has been superimposed on the slope field.

39. (C) The general solution is y = 3ln|x2 – 4| + C. The differential equation   

= reveals that the derivative does not exist for x = ±2. The 

particular solution must be differentiable in an interval containing initial
value x = –1, so the domain is –2 < x < 2.

40. (A) The solution curve shown is y = ln x, so the differential equation is 

41. (D) so .0 ≤ ≤θ π
4  1 0 12 2+ = =tan sec ; sec ; ;q q qdx x# #

 
¢ =y

x
1

.

6
42

x
x −

dy
dx

9 15
2

π
4

+

g x dx g x dx g x dx g x dx( ) ( ) ( ) ( )
0

4

4

6

6

9

9

12
∫ ∫ ∫+ + + ∫∫g x dx( )

0

12
∫

2 2
π

′ ( ) =F x
x

x
sin

lim
h

h F

h
F

→

+



 − 





= ′ 



0

π
4

π
4 π

4
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42. (C) The equations may be rewritten as = sin u and y = 1 " 2 sin2 u, 

giving y = 1 " 2 · .

43. (D) Use the formula for area in polar coordinates,

A = ;

then the required area is given by

.

(See polar graph 63 in the Appendix.)

44. (C) .

45. (A) The first three derivatives of are , , and .

The first four terms of the Maclaurin series (about x = 0) are 1, $2x, 

$ , and $ .

Note also that represents the sum of an infinite geometric series with 

first term 1 and common ratio 2x. Hence, 

= 1 $ 2x $ (2x)2 $ (2x)3 $ . . .

46. (D) We use parts, first letting u = x2, dv = e–xdx; then du = 2xdx, v = "e–x and

= 

Now we use parts again, letting u = x, dv = e–xdx; then du = dx, v = "e–x and 

" x2e–x $ = "x2e–x $ 2

Alternatively, we could use the Tic-Tac-Toe Method (See page 226):

Then = x2(–e–x) – (2x)e–x + 2(–e–x) + Cx e dxx2 −∫

u dv

x2 + e–x

2x – –e–x

2 + e–x

0 –e–x

− +( )− −∫xe e dxx x2 xe dxx−∫

− +− −∫x e xe dxx x2 2x e dxx2 −∫

1
1 2− x

1
1 2− x

48
3

3x
!

8
2

2x
!

48

1 2 4−( )x

8

1 2 3−( )x

2

1 2 2−( )x

1
1 2− x

dx

x
x

b b

b

2
1

1 2+
= = − −



 =

−∞

∞

→∞
−

−∫ lim tan
π π

2
π

4
1
2

2 2
4

· cos
/

θ
0

π

∫

1
2

2r dθ
α

β
∫

x2

2

x
2
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47. (E) Use formula (20) in the Appendix to rewrite the integral as

(1 – cos 2x) dx = = .

48. (E) The area, A, is represented by .

49. (D) = = = .

50. (C) Check to verify that each of the other improper integrals converges.

51. (D) Note that the integral is improper.

= = = = 

See Example 26, page 312.

52. (C) Let y = . Then ln y = "x ln x and

ln y = .

Now apply L’Hôpital’s Rule:

ln y = = 0.

So, if ln y = 0, then y = 1.

53. (D) The speed, ÙvÙ, equals , and since x = 3y " y2,

= (3 " 2y) = (3 " 2y) · 3.

Then ÙvÙ is evaluated, using y = 1, and equals .

54. (A) This is an indeterminate form of type ; use L’Hôpital’s Rule:

= = = −∞lim
sin sinx

x
x x→ +

−
0

1
·lim

csc
/x

x
x→ +

−
0

2

1
lim

cot
lnx

x
x→ +0

∞
∞

( ) ( )3 32 2+

dx
dt

dx
dt

dx
dt

dy
dt





 + 





2 2

lim
x→ +0

lim
x→ +0

lim
/

/x

x

x→ +

−
−0 2

1

1
lim

x→ +0

lim
ln
/x

x
x→ +

−
0 1

lim
x→ +0

1
x

x





π
3

lim sin
k

ku
→ −4 24

lim
k

k
du

u→ −

−
∫4 22

1
4

1
4

1
16

· 4lim
k

k du

u→ −

−
∫4 22

1
4

1
16

lim
k

k du

u→ −
−

∫4 22 16

−2 3sin cosθ θ2
2

a
a

sin cosθ θ
  θ− csc

dy
d
dx
d

θ

θ

dy
dx

1 2
0

2
−( ) =∫ cos t

π
π

1
22
π





1 2
2 0

2

2
π

x
x−





sin /1
02
π / 2

∫
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55. (E) We find A and B such that = .

After multiplying by the common denominator, we have

3x + 2 = .

Substituting x = "3 yields A = 1, and x = 4 yields B = 2; hence, 

= .

56. (B) Since cos , .

Then = .

Note that = 0, so the integral is proper.

57. (D) We represent the spiral as P(θ) = (θ cos θ, θ sin θ). So

Part B

58. (D) Since h is increasing, h¢ ≥ 0. The graph of h is concave downward for 
x < 2 and upward for x > 2, so h≤ changes sign at x = 2, where it appears
that h¢ = 0 also.

59. (C) I is false since, for example, f ¢(–2) = f ¢(1) = 0 but neither g("2) nor g(1)
equals zero.

II is true. Note that f = 0 where g has relative extrema, and f is positive, 
negative, then positive on intervals where g increases, decreases, then
increases.

III is also true. Check the concavity of g: when the curve is concave down, 
h % 0; when up, h & 0.

60. (A) If y = , then = , so = .

61. (D) represents the area of the same region as ,

translated one unit to the left. 

f x dx( )
−∫ 3

4
f x dx+( )

−∫ 1
4

3

− +( ) ( )−1
2

3 2 23 2xd y

dx

2

2
1
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−
0

1

1
4

1
96

−
 

1
4 960

1 2 4

0

1− −





∫ cos x
x

dx
x x

!

1
2 4

3− −cos
!

x
x

x x
!x

x x
! 1

2 4

2 4
− +

! !

1
3

2
4x x+

+
−

3 2

122
x

x x

+
− −

A x B x−( ) + +( )4 3

A
x

B
x+

+
−3 4

3 2
3 4
x

x x
+

+( ) −( )

Miscellaneous Multiple-Choice Practice Questions 479

7_4324_APCalc_21Chapter11  10/4/09  5:17 PM  Page 479



62. (D) According to the Mean Value Theorem, there exists a number c in the inter-

val [1,1.5] such that Use your calculator to solve the

equation for c (in radians).

63. (E) Here are the relevant sign lines:

signs of f ¢(x)                                        signs of f ¢¢(x)

We see that f ' and f ( are both positive only if x & 1.

64. (E) Note from the sign lines in Question 63 that f changes from decreasing to  
increasing at x = 1, so f has a local minimum.

Also, the graph of f changes from concave up to concave down at x = 0, 

then back to concave up at x = ; hence f has two points of inflection.

65. (C) The derivatives of ln (x $ 1) are , , , , . . .

The nth derivative at x = 2 is .

66. (C) The absolute-value function f (x) = |x| is continuous at x = 0, but f '(0) does
not exist.

67. (C) Let F '(x) = f (x); then F '(x $ k) = f (x $ k);

= F(3 + k) " F(k);

= F(3 + k) " F(k).

Or let u = x $ k. Then dx = du; when x = 0, u = k; when x = 3, u = 3 $ k.

68. (E) See the figure. The equation of the generating circle is (x " 3)2 $ y2 = 1, 

which yields x = .

x

y

0

1 – y22

(2,0) (3,0) (4,0)

1

–1

3 1 2± − y

f x dx
k

k ( )+
∫

3

f x k dx+( )∫0

3

−( ) −( )−1 1

3

1n

n

n !

− ( )
+( )
3

1 4

!

x

+
+( )
2

1 3
!

x

−
+( )
1

1 2x

1
1x +

2
3

cos
sin . sin

.
c = −1 5 1

0 5

 
¢( ) = ( ) - ( )

-
f c

f f1 5 1
1 5 1
.
.

.
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About the y-axis: ∆V = .

Thus, V = .

= 24π times the area of a quarter of a unit circle = 6π2.

69. (D) Note that ; then the derivative is .

70. (D) Let y' = . Then cos (xy)[xy' $ y] = y'. Solve for y'.

71. (E)

30. E.

30. E.

72. (C) About the x-axis; see the figure. Washer.

∆V = ,

V = .

73. (C) By the Mean Value Theorem, there is a number c in [1, 2] such that

= = –3.
f f2 1

2 1
( ) − ( )

−′ ( )f c
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0

2
e dxx2 1−( )∫

p y x2 21−( ) ∆
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y

0

.
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(2,0)

y = ex

∆ x

 
= ( ) + ( ) = ( ) + ( )2 2 2 2 42 2 2 2g x x f x x g x x f x• • • .

 
= ( ) ( ) + ( ) = ( ) + ( )g x

d
dx

x x
d
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g x g x x
d

dx
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dx
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2 2 2
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2
2

2 2 2 2•

d
dx
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d
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f x
d
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f x
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g x x
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2 2 2
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˘
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1
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2 2
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+ ( ) ( )
e

e
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uf g u e u( )( ) = ( )−tan 1 2

2 12 1 2
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1
π −∫ y dy

 2 3 2 1 2p • • − y y∆
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74. (D) The enclosed region, S, is bounded by y = sec x, the y-axis, and y = 4. 
It is to be rotated about the y-axis.

Use disks; then ∆V = πR2H = π(arc sec y)2 ∆y. Using the calculator, we find
that

dx ! 11.385.

75. (C) If Q is the amount at time t, then Q = 40e–kt. Since Q = 20 when t = 2, 
k = "0.3466. Now find Q when t = 3, from Q = 40e"(0.3466)3, getting 
Q = 14 to the nearest gram.

76. (A) The velocity v(t) is an antiderivative of a(t), where a(t) = . So 

v(t) = arctan t $ C. Since v (1) = 0, C = " π.  

Required average velocity = 

= dt ! 0.362.

77. (D) Graph y = tan x and y = 2 – x in ["1, 3] ) [" 1, 3] as shown on page 483.
Note that

∆A = (x
line

" x
curve

) ∆y

*A = (2 " y " arctan y) ∆y.

The limits are y = 0 and y = b, where b is the ordinate of the intersection of
the curve and the line. Using the calculator, solve

arctan y = 2 – y

and store the answer in memory as B. Evaluate the desired area:

(2 – y – arctan y) dy ! 1.077.
0

B

∫

1
2 2

2
2

0

2 π πt t+ −



∫ arctan

1
2 0 0

2

− ( )∫ v t dt

πt2

2
2+

πt
t

+
+
2

1 2

π arccos 1
2

1

4

y










∫

x

y

0

y = 4

(x,4)

(x,y)Dy
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78. (E) Center the ellipse at the origin and let (x, y) be the coordinates of the vertex
of the inscribed rectangle in the first quadrant, as shown in the figure.

=1

To maximize the rectangle’s area A = 4xy, solve the equation of the ellipse,
getting

x = = .

So A = . Graph y = 8x in the window [0,5] ) [0,150]. 

The calculator shows that the maximum area (the y-coordinate) equals 100.

( )25 2− x8 25 2y y−

2 25 2− y100 4 2− y

x y2 2

100 25
+

x

y

0

5

10

(x,y)

b

x + y = 2 y = tan x

DA
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79. (B) ! 1.221.

80. (B) When f ' is positive, f increases. By the Fundamental Theorem of Calculus, 
f '(x) = 1 " 2 (cos x)3. Graph f ' in [0, 2!] ) ["2, 4]. It is clear that f ' & 0
on the interval a % x % b. Using the calculator to solve (– 2 cos x)3 = 0
yields a = 0.654 and b = 5.629.

81. (C) = .

82. (B) The volume is composed of elements of the form ∆V = (2x)2 ∆y. If h is the
depth, in feet, then, after t hr,

V(h) = 4 and = 4h .

Thus, 12 = 4 (9) 

and = ft/hr.

16'

h

y = x2

y 

2x

2x

1
3

dh
dt

dh
dt

dh
dt

dV
dt

y dy
h

0∫

12 22
1
−

 
a

v v
1 5

2 1
2 1

.( ) ( ) − ( )
−!

a b

x x dx

e

e
ln

1

1
∫

−
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83. (B) Separating variables yields

= k dt,

"ln(1000 " P) = kt + C,

1000 " P = ce"kt.

Then
P(t) = 1000 " ce"kt.

P(0) = 300 gives c = 700. P(5) = 500 yields 500 = 1000 " 700e"5k, so 
k ! $ 0.0673. Now P(10) = 1000 " 700e"0.673 ! 643.

84. (C) H(1) = dx = 4 arctan 1 = π. H'(1) = f (1) = 2.

The equation of the tangent line is y " π = 2(x " 1).

85. (C) Using midpoint diameters to determine cylinders, estimate the volume to be

V ! π . 82 . 25 $ π . 62 . 25 $ π . 42 . 25 $ π . 32 . 25.

86. (A) ' (3) = = .

87. (C) H'(3) = f ' . g'(3) = f ' (2) . g'(3).

88. (E) M'(3) = f (3) . g'(3) + g(3) . f '(3) = 4 . 3 + 2 . 2.

89. (E) K'(3) = = = = .

90. (C) R'(3) = . f '(3).

91. (D) Here are the pertinent curves, with d denoting the depth of the water:

92. (B) Use areas; then = "3 + 10 = 7. Thus, f (7) "f (1) = 7.′∫ f
1

7

t

d

t

d ′ = W(t)

1
2

3
1 2

f ( )( )− /

1
1
2

1
4′ ( )g

1
31′ ( )( )−g g

1
3′ ( )( )g K

g 3( )( )

2 2 4 3

22
( ) − ( )g f f g

g

( ) ( ) ( ) ( )

( )

3 3 3 3

3 2
· ·′ − ′

( )
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g







4

120

1

x +∫

dP
P1000 −
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93. (B) The region x units from the stage can be approximated by the semicircular
ring shown; its area is then the product of its circumference and its width. 

The number of people standing in the region is the product of the area and
the density:

.

To find the total number of people, evaluate

94. (B) is positive, but decreasing; hence 

95. (C)

96. (E) On 2 # t # 5, the object moved ft to the right; then on 5 # t # 8, it 

moved only ft to the left.

97. (B) Average acceleration = = = .

98. (D) Evaluate = 36 ln = 36 ln 3.

99. (A) 2x + 2y = 0 and = – at the point (3, 4).

Use, also, the facts that the speed is given by |v| = and that

the point moves counterclockwise; then = 4, yielding 

and at the given point. The velocity vector, v, at (3, 4) must

therefore be .− +8
5

6
5

i j

dy
dt

= + 6
5

dx
dt

= − 8
5

dx
dt

dy
dt( ) + 





2 2

dx
dt

dy
dt( ) + 





2 2

3
4

dx
dt
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dt

dy
dt
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2 3
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3
t +( )72
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100. (A) v = "ak sin kti $ ak cos ktj, and

a = "ak2 cos kti " ak2 sin ktj + "k2R.

101. (B) The formula for length of arc is

L = dx.

Since y = 2x, we find 

L = dx ! 3.664.

102. (D) a(t) + (0, et); the acceleration is always upward.

103. (A) At (0, 1), = 4, so Euler’s method yields (0.1, 1$0.1(4)) = (0.1, 1.4). 

= 4y has particular solution y = e4x; the error is e4(0.1) " 1.4.

104. (D) 1 " + = 0.7. Note that the series converges by the Alternating Series  

Test. Since the first term dropped in the estimate is – , the estimate is too 
high, but within 0.1 of the true sum.

105. (C) = , which equals a constant times the harmonic series.

106. (D) We seek x such that

< 1

or such that < 1

or such that .

The fraction equals = e.

Then |x | % e and the radius of convergence is e.

lim
n

n

n→∞
+



1

1
lim

n

nn
n→∞

+





1

x
n

nn
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1
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∞
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∞
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∫ dy
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107. (B) The error is less than the maximum value of for 0 ≤ x ≤ .

This maximum occurs at c = x = .

108. (D) Distance = dt.

= dt.

Note that the curve is traced exactly once by the parametric equations from 
t = 0 to t = 1.

sec sin2 2 2

0

1
2 2t t( ) + −( )∫

dx
dt

dy
dt





 + 



∫

2 2

0

1

1
2

1
2

e
x

c

3
3

!
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These problems provide further practice for both parts of Section II of the examination.
Solutions begin on page 495.

Part A. Directions: A graphing calculator is required for some of these problems. 
See instructions on page 4.

1. A function f is continuous, differentiable, and strictly decreasing on the interval
[2.5,5]; some values of f are shown in the table above.

(a) Estimate f !(4.0) and f !(4.8).
(b) What does the table suggest may be true of the concavity of f? Explain.

(c) Estimate with a Riemann sum using left endpoints.

(d) Set up (but do not evaluate) a Riemann sum that estimates the volume of the

solid formed when f is rotated around the x-axis.

2. The equation of the tangent line to the curve x2y " x = y3 " 8 at the point (0,2) is 
12y # x = 24.

(a) Given that the point (0.3,y
0
) is on the curve, find y

0
approximately, using the 

tangent line.
(b) Find the true value of y

0
.

(c) What can you conclude about the curve near x = 0 from your answers to parts 
(a) and (b)?

3. Draw a graph of y = f (x), given that f satisfies all the following conditions:

(1) f !("1) = f !(1) = 0.
(2) If x $ "1, f !(x) % 0 but f & < 0.
(3) If "1 $ x $ 0, f !(x) % 0 and f & > 0.
(4) If 0 $ x $ 1, f !(x) % 0 but f & < 0.
(5) If x % 1, f !(x) $ 0 and f & < 0.

f x dx( )∫2 5

5

.
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4. A differentiable function f defined on !7 " x " 7 has f (0) = 0 and f #(x) = 
2x sin x – e–x2

+ 1. (Note: The following questions refer to f, not to f #.)

(a) Describe the symmetry of f.
(b) On what intervals is f decreasing?
(c) For what values of x does f have a relative maximum? Justify your answer.
(d) How many points of inflection does f have? Justify your answer.

5. Let C represent the piece of the curve that lies in the first quadrant. 

Let S be the region bounded by C and the coordinate axes.

(a) Find the slope of the line tangent to C at y = 1.
(b) Find the area of S.
(c) Find the volume generated when S is rotated about the x-axis.

6. Let R be the point on the curve of y = x ! x2 such that the line OR (where O is the
origin) divides the area bounded by the curve and the x-axis into two regions of
equal area. Set up (but do not solve) an integral to find the x-coordinate of R.

7. Suppose f ## = sin (2x) for !1 " x " 3.2.

(a) On what intervals is the graph of f concave downward? Justify your answer.
(b) Find the x-coordinates of all relative minima of f #.
(c) How many points of inflection does the graph of f # have? Justify your answer.

8. Let f (x) = cos x and g(x) = x2 ! 1.

(a) Find the coordinates of any points of intersection of f and g.
(b) Find the area bounded by f and g.

9. (a) In order to investigate mail-handling efficiency, each hour one morning a local
post office checked the rate (letters/min) at which an employee was sorting mail.
Use the results shown in the table to estimate the total number of letters he may have
sorted that morning. 

(b) Hoping to speed things up a bit, the post office tested a sorting machine that can
process mail at the constant rate of 20 letters per minute. The graph shows the rate at
which letters arrived at the post office and were dumped into this sorter. 

(i) When did letters start to pile up?
(ii) When was the pile the biggest?

(iii) How big was it then?
(iv) At about what time did the pile vanish?

Letters / min
30

20

10

8 A.M. noon 2 P.M. 4 P.M. 6 P.M.10 A.M.

64 16 23 − x
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10. A particle moves on the curve of y3 = 2x $ 1 so that its distance from the x-axis is 
increasing at the constant rate of 2 units/sec. When t = 0, the particle is at (0,1).

(a) Find a pair of parametric equations x = x(t) and y = y(t) that describe the motion
of the particle for nonnegative t.

(b) Find |a|, the magnitude of the particle’s acceleration, when t = 1.

11. Find the area of the region that the polar curves r = 2 ! cos % and r = 3 cos % enclose 
in common.

12. (a) Using your calculator, verify that 

.

(b) Use the Taylor polynomial of degree 7 about 0,

,

*47. (a) to approximate tan!1 1/5, and the polynomial of degree 1 to approximate 
tan!1 1/239.

(c) Use part (b) to evaluate the expression in (a).
(d) Explain how the approximation for &/4 given here compares with that obtained

using π/4 = tan!1 1.

13. (a) Show that the series converges.

(b) How many terms of the series are needed to get a partial sum within 0.1 of the
sum of the whole series?

(c) Tell whether the series is absolutely convergent, conditionally

convergent, or divergent. Justify your answer.

14. Given = ky (10 ! y) with y = 2 at t = 0 and y = 5 at t = 2:

(a) Find k.
(b) Express y as a function of t.
(c) For what value of t will y = 8?
(d) Describe the long-range behavior of y.

15. An object P is in motion in the first quadrant along the parabola y = 18 - 2x2 in such
a way that at t sec the abscissa of its position is x = t.

(a) Where is P when t = 4?
(b) What is the vertical component of its velocity there?
(c) At what rate is its distance from the origin changing then?
(d) When does it hit the x-axis?
(e) How far did it travel altogether?

16. A particle moves in the xy-plane in such a way that at any time t ≥ 0 its position is 

given by 

(a) Sketch the path of the particle, indicating the direction of motion.
(b) At what time t does the particle reach its highest point? Justify.
(c) Find the coordinates of that highest point, and sketch the velocity vector there.
(d) Describe the long-term behavior of the particle.

x t t y t t
t

( ) = ( ) =
+

4 12
12,arctan .

1
2

dy
dt

−( )
=

∞

∑ 1
1

2

n

n n nln

−( )
+( )

+

=

∞

∑ 1
1

1
1

1

n

n nln

tan / / /− ≈ − + −1 3 5 73 5 7x x x x x

4 1 5 1 2391 1tan / tan /− −( )( ) − ( )( ) ≈ π
4

Miscellaneous Free-Response Practice Exercises 491

BC ONLY

7_3679_APCalc_22Chapter12  10/3/08  4:33 PM  Page 491



Part B. Directions: Answer these questions wtihout using your calculator.

17. The figure below shows the graph of f ¢, the derivative of f, with domain .
The graph of f ¢ has horizontal tangents at x = 2 and x = 4, and a corner at x = 6.

(a) Is f continuous? Explain.
(b) Find all values of x at which f attains a relative minimum.  Justify.
(c) Find all values of x at which f attains a relative maximum.  Justify.
(d) At what value of x does f attain its absolute maximum?  Justify.
(e) Find all values of x at which the graph of f has a point of inflection.  Justify.

18. Find the area of the largest rectangle (with sides parallel to the coordinate axes) that
can be inscribed in the region bounded by the graphs of f(x) = 8 ! 2x2 and 
g(x) = x2 ! 4.

19. Given the graph of f (x), sketch the graph of f #(x).

20. A cube is contracting so that its surface area decreases at the constant rate of 
72 in.2/sec. Determine how fast the volume is changing at the instant when the 
surface area is 54 ft2.

f (x)

1 2

1

2

3

–3 –2 –1 0 1 2 3 4 5 6 7 8 9

f ¢

f ¢

− ≤ ≤3 9x
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21. A square is inscribed in a circle of radius a as shown in the diagram. Find the vol-
ume obtained if the region outside the square but inside the circle is rotated about a
diagonal of the square.

22. (a) Sketch the region in the first quadrant bounded above by the line y = x ! 4, 
below by the line y = 4 " x, and to the right by the parabola y = x2 ! 2.

(b) Find the area of this region.

23. The graph shown below is based roughly on data from the U.S. Department of
Agriculture.

(a) During which intervals did food production decrease in South Asia?
(b) During which intervals did the rate of change of food production increase?
(c) During which intervals did the increase in food production accelerate?

24. A particle moves along a straight line so that its acceleration at any time t is given in
terms of its velocity v by a = "2v.

(a) Find v in terms of t if v = 20 when t = 0.
(b) Find the distance the particle travels while v changes from v = 20 to v = 5.

25. Let R represent the region bounded above by the parabola y = 27 " x2 and below by
the x-axis. Isosceles triangle AOB is inscribed in region R with its vertex at the origin
O and its base parallel to the x-axis. Find the maximum possible area for such a
triangle.

AB

1977 1979 19811975

120

115

110

Food Production in South Asia
(Index was 100 during 1969–71)

index

x

y

0

R (0,a)

(a,0)

S
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26. (a) Find the Maclaurin series for f (x) = ln(1 $ x).
(b) What is the radius of convergence of the series in (a)?
(c) Use the first five terms in (a) to approximate ln(1.2).
(d) Estimate the error in (c), justifying your answer.

27. A cycloid is given parametrically by x = % ! sin %, y = 1 ! cos %.

(a) Find the slope of the curve at the point where % = .

(b) Find the equation of the tangent to the cycloid at the point where % = .

28. Find the area of the region enclosed by both the polar curves r = 4 sin % and r = 4 cos %.

29. (a) Find the 4th degree Taylor polynomial about 0 for cos x.

(b) Use part (a) to evaluate cos x dx.

(c) Estimate the error in (b), justifying your answer.
0

1

∫

2
3
π

2
3
π
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Answers Explained

Part A

1. (a) f !(4.0) ! = = "1.5.

15. (a) f !(4.8) ! = = "1.75.

15. (b) It appears that the rate of change of f, while negative, is increasing. This

implies that the graph of f is concave upward.

15. (c) L = 7.6(0.7) + 5.7(0.3) + 4.2(0.5) + 3.1(0.6) + 2.2(0.4) = 11.87.

15. (d) Using disks ∆V = πr2∆x. One possible answer uses the left endpoints of the

subintervals as values of r:

V ≈ π(7.6)2(0.7) + π(5.7)2(0.3) + π(4.2)2(0.5) + π(3.1)2(0.6) + π(2.2)2(0.4)

2. (a) 12y
0

# 0.3 = 24 yields y
0

! 1.975.

21. (b) Replace x by 0.3 in the equation of the curve:

(0.3)2y
0

" (0.3) = y
0

3 " 8 or

y
0

3 " 0.09y
0

" 7.7 = 0.

The calculator’s solution to three decimal places is y
0

= 1.990.

21. (c) Since the true value of y
0

at x = 0.3 exceeds the approximation, conclude 
that the given curve is concave up near x = 0. (Therefore, it is above 
the line tangent at x = 0.)

3. The graph shown below satisfies all five conditions. So do many others!

x

y

0–1 1

1 5 2 2
0 4

. .
.

−f f( ) ( . )
.

5 4 6
5 4 6

−
−

2 2 3 1
0 6

. .
.

−f f( . ) ( . )
. .

4 6 4 0
4 6 4 0

−
−
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4. Graph f #(x) = 2x sin x – e(–x2) + 1 in [–7, 7] ' [–10, 10].

1. (a) Since f # is even and f contains (0, 0), f is odd and its graph is symmetric
about the origin.

1. (b) Since f is decreasing when f # < 0, f decreases on the intervals (a, c) and 
( j, l). Use the calculator to solve f #(x) = 0. Conclude that f decreases on 
!6.202 " x " !3.294 and (symmetrically) on 3.294 " x " 6.202.

1. (c) f has a relative maximum at x = q if f #(q) = 0 and if f changes from 
increasing ( f #( 0) to decreasing ( f #" 0) at q. There are two relative 
maxima here: 
at x = a = !6.202 and at x = j = 3.294.

1. (d) f has a point of inflection when the graph of f changes its concavity; that is,
when f# changes from increasing to decreasing, as it does at points d and h,
or when f changes from decreasing to increasing, as it does at points b, g,
and k. So there are five points of inflection altogether.

5. In the graph below, C is the piece of the curve lying in the first quadrant. S is the
region bounded by the curve C and the coordinate axes.

1. (a) Graph y = in [–1,3] ' [–1,5]. Since you want dy/dx, the 

slope of the tangent, where y = 1, use the calculator to solve

= 1

(storing the answer at B). Then evaluate the slope of the tangent to C at 
y = 1:

f #(B) ! – 21.182.

1. (b) Since )A = y)x, A = ! 6.730. 1.y dx
0

2
∫

64 16 23 − x

64 16 23 −( )x

0 2 x

y

(x,y)
C

S
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(c) When S is rotated about the x-axis, its volume can be obtained using disks:

∆V = πR2∆x = πy2 ∆x,

V = π y2 dx

= π dx ! 74.310.

6. See the figure, where R is the point (a, b), and seek a such that

= .

7. Graph y = sin 2x in [!1, 3.2] ' [!1, 1]. Note that y = f ##.

1. (a) The graph of f is concave downward where f * is negative, namely, on 
(b, d). Use the calculator to solve sin 2x = 0, obtaining b = 1.651 and 
d = 2.651. The answer to (a) is therefore 1.651 " x " 2.651.

1. (b) f # has a relative minimum at x = d, because f * equals 0 at d, is less than 0 
on (b, d), and is greater than 0 on (d, g). Thus f # has a relative minimum
(from part a) at 2.651.

1. (c) The graph of f # has a point of inflection wherever its second derivative f###
changes from positive to negative or vice versa. This is equivalent to f##
changing from increasing to decreasing (as at a and g) or vice versa (as at
c). Therefore, the graph of f # has three points of inflection on [!1, 3.2].

gdcba 3.0–1.0

–1.0

1.0

f ″

x

y

0

y = x – x2

R
(a,b)

1

1
2

2
0

1
x x dx−( )∫

 
x x

b
a

x dx
a

− −



∫ 2

0
i

64 16 23
2

−( )x
0

2
∫

0

2
∫
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8. Graph f(x) = cos x and g(x) = x2 – 1 in [–2, 2] × [–2, 2]. Here, y
1

= f and y
2

= g.

1. (a) Solve cos x = x2 – 1 to find the two points of intersection: (1.177,0.384) and
(!1.177,0.384). 

1. (b) Since )A = (y
1

! y
2
) )x = )x, the area A bounded by the two

curves is

(cos x – (x2 – 1)) dx

! 3.114.

9. (a) Use the Trapezoid Rule, with h = 60 min: 

1. (b) Draw a horizontal line at y = 20 (as shown on the graph below), represent-
ing the rate at which letters are processed then.

(i) Letters began to pile up when they arrived at a rate greater than that at
which they were being processed, that is, at t = 10 A.M.

(ii) The pile was largest when the letters stopped piling up, at t = 2 P.M.
(iii) The number of letters in the pile is represented by the area of the small 

trapezoid above the horizontal line: 1
2

4 60 1 60 10 1500• • .+( )( ) =

30

20

10

8 A.M. noon10 A.M. 2 P.M. 6 P.M.4 P.M.

Letters / min

h y y y y y
2

2 2 2

60
2

10 2 12 2 8 2 9 1

0 0 0 0 5+ + + +( ) =

+ + + +• • • 11 2370( ) = letters.

 
= 2

0

1 177" .

  
A y y dx= -( )2

0

1 177

1 2" .

,

 f x g x( ) - ( )[ ]

0

(x,y2)

(x,y1)

x

y
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(iv) The pile began to diminish after 2 P.M., when letters were processed at 
a rate faster than they arrived, and vanished when the area of the 
shaded triangle represented 1500 letters.  At 5 P.M. this area is 

letters, so the pile vanished shortly before 5 P.M.

10. (a) Since = 2, y = 2t + 1 and x = 4t3 + 6t2 + 3t.

1. (b) Since = 0 and = 24t + 12, then, when t = 1, ÙaÙ = 36.

11. See the figure. The required area A is twice the sum of the following areas: that

of the limaçon from 0 to , and that of the circle from to . Thus 

A = 2 

= .

12. (a) Both π/4 and the expression in brackets yield 0.7853981634, which is 

accurate to ten decimal places.

1. (b) = 0.197396.

= 0.004184.

1. (c) = 0.7854; this agrees with the value of to four 

decimal places.

1. (d) The series

+ . . .

converges very slowly. Example 56, page 436, evaluated the sum of 
60 terms of the series for π (which equals 4 tan!11). To four decimal 
places, we get π = 3.1249, which yields 0.7812 for π/4—not accurate 
even to two decimal places.

tan− = − + −1 1 1 1
3

1
5

1
7

π
4

4 1
5

1
239

1 1tan tan− −−

tan− =1 1
239

1
239

tan− = − ( ) + ( ) − ( )1
3 5 71

5
1
5

1
3

1
5

1
5

1
5

1
7

1
5

x

y

0

r = 2 – cos θ

r = 3 cos θ

π
3

π
3

–

9
4

3 3π −

1
2

2 1
2

32 2

3

2

0

3
−( ) + ( )



∫∫ cos cos

/

//
θ θ θ θ

π

ππ
d d 

π
2

π
3

π
3

d x
dt

2

2
d y
dt

2

2

dy
dt

1
2

3 60 10 1800•( )( ) =
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13. (a) The given series is alternating. Since 

Since ln x is an increasing function,

The series therefore converges.

1. (b) Since the series converges by the Alternating Series Test, the error in using
the first n terms for the sum of the whole series is less than the absolute 

value of the (n + 1)st term. Thus the error is less than Solve for 

n using 

The given series converges very slowly!

1. (c) The series is conditionally convergent. The given 

alternating series converges since the nth term approaches 0 and 

However, the nonnegative series diverges by 

the Integral Test, since

.

14. (a) Solve by separation of variables:

= k dt,

dy = k dt,

= kt + C,

ln = !10 (kt + C).

Let c = e!10C; then

= ce!10kt.
10 − y

y

10 −





y
y

1
10 10

ln
y

y−






∫1
10

1 1
10y y

+ −




∫

dy
y y10 −( )

1
22 x x

dx x
b

b

ln
lim ln ln= ( ) = ∞

→∞

∞

∫

 

1
1 1

1
n n n n+( ) +( ) <

ln ln
.

-( )
•

Â 1
1

2

n

n nln

 

ln ,

,

, .

n

n e

n e

+( ) >
+( ) >

> - >

1 10

1

1 22 025

10

10

1
1

0 1
ln

. :
n +( ) <

1
1ln

.
n +( )

ln ln
ln ln

.n n
n n

+( ) >
+( ) <1

1
1

1
and

lim ln , lim
ln

.
n n

n
nÆ• Æ•

+( ) = •
+( ) =1

1
1

0
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Now use initial condition y = 2 at t = 0:

= ce0 so c = 4;

and the other condition, y = 5 at t = 2, gives

= 4e!20k or k = ln 2.

1. (b) Since c = 4 and Solving for y yields

.

1. (c) . means 1 + 4 · 2-t = 1.25, so t = 4.

1. (d) , so the value of y approaches 10.

15. (a) Since Since y = 18 - 2 • 22 = 10, P is at (2,10).

1. (b) Since Since Therefore 

unit/sec.

1. (c) Let D = the object’s distance from the origin. Then

1. (d) The object hits the x-axis when y = 18 - 2x2 = 0, or x = 3. Since 

1. (e) The length of the arc of y = 18 - 2x2 for is given by 

L = dx = dx = 18.460 units. 1 4 2

0

3
+ −( )∫ x1

2

+ 



∫ dy

dx

0 3≤ ≤x

 
x t t= = =1

2
3 6, .

2 2 2

2 104 2 2
1
2

2 10 4

78
2 104

3 824

D
dD
dt

x
dx
dt

y
dy
dt

dD
dt
dD
dt

= +

= + -( )

= - = -

,

,

.

• • •

 unit sec.

D x y D2 2 2 2 10 104= + ( ) =, , . and at 

dy
dt

x
dx
dt

= - = - = -4 4 2
1
2

4• •

x t
dx
dt

= =1
2

1
2

, .y x
dy
dt

x
dx
dt

= - = -18 2 42, .

x t x= ( ) = ( ) =1
2

4
1
2

4 2, .

lim
•t t→∞ −+

=10
1 4 2

10

8 10
1 4 2

=
+ −• t

y t=
+ −

10
1 4 2•

 
k

y
y

e t= - = - ( )1
10

2
10

4 10 21
10ln , .ln then

1
10

5
5

8
2
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16. (a) See graph.

1. (b) You want to maximize 

See signs analysis.

The maximum y occurs when t = 1, because y changes from increasing to
decreasing there.

1. (c) Since x(1) = 4arctan 1 = π and the coordinates of the 

highest point are (π,6).

Since so v(1) = (2,0). This vector is 

shown on the graph.

1. (d) and Thus 

the particle approaches the point (2π,0).

 
lim lim .
t t

y t
t

tÆ• Æ•
( ) =

+
=12

1
02

lim ( ) lim ,
t t

x t t
→∞ →∞

= = 



 =4 4

2
2arctan

π π

¢( ) =
+

¢( ) =
-( )

+( )x t
t

y t
t

t

4
1

12 1

12

2

2 2 and ,

y 1
12

1 1
6( ) =

+
= ,

y

y ¢

0

+ –

1Inc. Dec.
t

′ ( ) =
+( )( ) − ( )

+( )
=

−( ) +(
y t

t t t

t

t t
2

2 2

1 12 12 2

1

12 1 1 ))
+( )t2 2

1
.

y t
t

t
( ) =

+
12

12 .

8.0

–1.0

–1.0 8.0

(p,6) v
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Part B
17. (a) f ¢ is defined for all x in the interval. Since f is therefore differentiable, it

must also be continuous.
1. (b) From the graph we see that f ¢ = 0 at x = -2, 4, and 7.  The sign of f ¢ tells

whether f is increasing or decreasing on the relevant intervals. f attains 
relative minima at x = -2 and x = 9.

1. (c) Similarly, f attains relative maxima at x = -3 and x = 7.

1. (d) Note that Since there is more area above the

x-axis than below the x-axis on [-3,7], the integral is positive and 
f(7) - f(-3) > 0. This implies that f(7) > f(-3), and that the absolute 
maximum occurs at x = 7.

1. (e) Since f ¢ changes from increasing to decreasing (or vice versa) at x = 2, 4,
and 6, f ≤ changes sign at each of these points. Therefore, the graph of f
has points of inflection there.

18. Draw a sketch of the region bounded above by y
1

= 8 ! 2x2 and below by 
y

2
= x2 ! 4, and inscribe a rectangle in this region as described in the question. 

If (x, y
1
) and (x, y

2
) are the vertices of the rectangle in quadrants I and IV, 

respectively, then the area

A = 2x (y
1

! y
2
) = 2x(12 ! 3x2),   or   A(x) = 24x ! 6x3.

Then A#(x) = 24 ! 18x2 = 6(4 ! 3x2), which equals 0 when x = = . 

Check to verify that A*(x) " 0 at this point. This assures that 

this value  of x yields maximum area, which is given by .

19. The graph of f ¢(x) is shown here.

20. The rate of change in volume when the surface area is 54 ft3 is ft3/sec.− 3
8

1

1 2

2

 f ′(x)

1

1 2

2

3

 f (x)

4 3
3

8×

2 3
3

2
3

  
f f f x dx7 3

3

7

( ) - -( ) = ¢( )
-

" .
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21. See the figure. The equation of the circle is x2 ! y2 = a2; the equation of RS is 
y = a " x. If y

2
is an ordinate of the circle and y

1
of the line, then,

,

.

22. (a) The region is sketched in the figure. The pertinent points of intersection 
are labeled.

x

y

0

(1,5)

(2,6)

(1,3)

y = 4 – x

x +4 –(x2 + 2)

x +4 –(4 – x)

y = x2 + 2

y = x + 4

x

y

0

R (0,a)

(a,0)

(x,y1)

(x,y2)

S

  
V a x a x dx a

a

= p = p2
2
30

2 2 2 3! [( – ) – ( – ) ]

∆ = π ∆ − π ∆V y x y x2
2

1
2
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1. (b) The required area consists of two parts. The area of the triangle is represented

by and is equal to 1, while the area of the region

bounded at the left by x = 1, above by y = x ! 4, and at the right by the

parabola is represented by . This equals

.

The required area, thus, equals or .

23. (a) 1975 to 1976 and 1978 to 1980.
1. (b) 1975 to 1977 and 1979 to 1981.
1. (c) 1976 to 1977 and 1980 to 1981.

24. (a) Since then, separating variables, Integrating gives

(1)

and, since v = 20 when t = 0, C = ln 20. Then (1) becomes 
or, solving for v,

(2)

1. (b) Note that v " 0 for all t. Let s be the required distance traveled (as v
decreases from 20 to 5); then

(3)

where, when v = 20, t = 0. Also, when v = 5, use (2) to get or 

#ln 4 = #2t. So t = ln 2. Evaluating s in (3) gives

25. Let (x,y) be the point in the first quadrant where the line parallel to the x-axis
meets the parabola. The area of the triangle is given by

A = xy = x(27 – x2) = 27x – x3 for 0 ≤ x ≤ 3 .

Then A$(x) = 27 – 3x2 = 3(3 + x)(3 – x), and A$(x) = 0 at x = 3.

Since A$ changes from positive to negative at x = 3, the area reaches its maxi-
mum there.

The maximum area is A(3) = 3(27 – 32) = 54.

3

 
s e t= - = - -Ê

Ë
ˆ
¯ =-10 10

1
4

1
15
2

2

0

2ln

.

1
4

2= -e t

 
s e dt e dt

v

v
t

t

t= =
=

=
-

=

-! !
20

5
2

20

2
220 20

ln

,

 v e t= -20 2 .

ln
v

t
20

2= -

ln ,v t C= - +2

dv
v

dt= -2 .a
dv
dt

v= = -2 ,

13
6

2 1
6

x x dx x x x+ −( ) = + − =∫ 2
2

2
3

7
6

2

1

2 2 3

1

2

x x dx+( ) − +( ) ∫ 4 22

1

2

x x dx+( ) − −( ) ∫ 4 4
1

2
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26. (a) Let f(x) = ln (1 ! x). Then f $(x) = , f %(x) = – , f &(x) = , 

f (4)(x) = , f (5)(x) = . At x = 0, 

f (0) = 0, f $(0) = 1, f %(0) = #1, f &(0) = 2, f (4)(0) = #(3!), and f (5)(0) = 4!. So

ln (1 + x)= .

1. (b) Using the Ratio Test, you know that the series converges when 

, that is, when ÙxÙ ' 1, or #1 ' x ' 1. Thus, the 

radius of convergence is 1.

1. (c) ln (1.2) = .

1. (d) Since the series converges by the Alternating Series Test, the error in the 

answer for (c) is less absolutely than .

27. From the equations for x and y,

dx = (1 # cos θ) dθ and   dy = sin θ dθ.

1. (a) The slope at any point is given by which here is . When 

, the slope is .

1. (b) When , and The equation of the 

tangent is   9 3 3 18 2 3y x- = -• .p

y = − −



 =1

1
2

3
2

.
 
x = −2

3
3

2
p

θ π= 2
3

3
3

θ π= 2
3

sin
cos

θ
θ1 −

dy
dx

,

0 2
6

6.( )

0 2
0 2

2
0 2

3
0 2

4
0 2

5

2 3 4 5

.
. . . .

− ( ) + ( ) + ( ) + ( )

 
lim
x

n

n
x
n

n
x→∞

+

+ <
1

1
1i

x
x x x x− + − + − ⋅ ⋅ ⋅

2 3 4 5

2 3 4 5

4
1 5

!
+( )x

−
+( )
3

1 4
!
x

2
1 3+( )x

1
1 2+( )x

1
1 + x
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28. Both curves are circles with centers at, respectively, (2, 0) and the 

circles intersect at The common area is given by

or .

The answer is 2(π ! 2).

29. (a) For f (x) = cos x, f"(x) = !sin x, f #(x) = !cos x, f $(x) = sin x, f (4)(x) = cos x, 
f (5)(x) = !sin x, f (6)(x) = !cos x. The Taylor polynomial of order 4 about 
0 is

cos x = 1 – + .

Note that the next term of the alternating Maclaurin series for cos x is – .

1. (b) .

1. (c) The error in (b), convergent by the Alternating Series Test, is less 
absolutely than the first term dropped:

error < .x dx x6 7

0

1

0

1

6 7
1
7! ! !

= =∫

cos
! !

x dx x x x= − ⋅ + ⋅ = − +∫
3

0

1 5

0

1

3 2 5 4
1 1

6
1

120

x6

6!

x4

4!
x2

2!

4
2

4

2
cos

/

/
θ θ

π

π ( )∫ d4
2

0

4
sin

/
θ θ

π ( )∫ d

 
2 2

4
, .
p





2
2

, ;
p





Miscellaneous Free-Response Practice Exercises 507

7_4324_APCalc_22Chapter12  12/17/09  4:14 PM  Page 507



7_3679_APCalc_22Chapter12  10/3/08  4:33 PM  Page 508



AB PRACTICE 
EXAMINATIONS

7_3679_APCalc_23ABExam1  10/3/08  4:34 PM  Page 509



7_3679_APCalc_23ABExam1  10/3/08  4:34 PM  Page 510



An
sw

er
 S

he
et

1   A     B     C     D     E  A     B     C     D     E

2   A     B     C     D     E  A     B     C     D     E

3   A     B     C     D     E  A     B     C     D     E

4   A     B     C     D     E  A     B     C     D     E

5   A     B     C     D     E  A     B     C     D     E

6   A     B     C     D     E  A     B     C     D     E

7   A     B     C     D     E  A     B     C     D     E

8   A     B     C     D     E  A     B     C     D     E

9   A     B     C     D     E  A     B     C     D     E

10   A     B     C     D     E  A     B     C     D     E

11   A     B     C     D     E  A     B     C     D     E

12   A     B     C     D     E  A     B     C     D     E

13   A     B     C     D     E  A     B     C     D     E

14   A     B     C     D     E  A     B     C     D     E

15   A     B     C     D     E  A     B     C     D     E

16   A     B     C     D     E  A     B     C     D     E

17   A     B     C     D     E  A     B     C     D     E

18   A     B     C     D     E  A     B     C     D     E

19   A     B     C     D     E  A     B     C     D     E

20   A     B     C     D     E  A     B     C     D     E

21   A     B     C     D     E  A     B     C     D     E

22   A     B     C     D     E  A     B     C     D     E

23   A     B     C     D     E  A     B     C     D     E

24   A     B     C     D     E  A     B     C     D     E

25   A     B     C     D     E  A     B     C     D     E

26   A     B     C     D     E  A     B     C     D     E

27   A     B     C     D     E  A     B     C     D     E

28   A     B     C     D     E  A     B     C     D     E

29   A     B     C     D     E  A     B     C     D     E

30   A     B     C     D     E  A     B     C     D     E

31   A     B     C     D     E  A     B     C     D     E

32   A     B     C     D     E  A     B     C     D     E

33   A     B     C     D     E  A     B     C     D     E

34   A     B     C     D     E  A     B     C     D     E

35   A     B     C     D     E  A     B     C     D     E

36   A     B     C     D     E  A     B     C     D     E

37   A     B     C     D     E  A     B     C     D     E

38   A     B     C     D     E  A     B     C     D     E

39   A     B     C     D     E  A     B     C     D     E

40   A     B     C     D     E  A     B     C     D     E

41   A     B     C     D     E  A     B     C     D     E

42   A     B     C     D     E  A     B     C     D     E

43   A     B     C     D     E  A     B     C     D     E

44   A     B     C     D     E  A     B     C     D     E

45   A     B     C     D     E  A     B     C     D     E

Answer Sheet
A B  P R A C T I C E  E X A M I N A T I O N  1

Part A

29   A     B     C     D     E  A     B     C     D     E

30   A     B     C     D     E  A     B     C     D     E

31   A     B     C     D     E  A     B     C     D     E

32   A     B     C     D     E  A     B     C     D     E

33   A     B     C     D     E  A     B     C     D     E

34   A     B     C     D     E  A     B     C     D     E

35   A     B     C     D     E  A     B     C     D     E

36   A     B     C     D     E  A     B     C     D     E

37   A     B     C     D     E  A     B     C     D     E

38   A     B     C     D     E  A     B     C     D     E

39   A     B     C     D     E  A     B     C     D     E

40   A     B     C     D     E  A     B     C     D     E

41   A     B     C     D     E  A     B     C     D     E

42   A     B     C     D     E  A     B     C     D     E

43   A     B     C     D     E  A     B     C     D     E

44   A     B     C     D     E  A     B     C     D     E

45   A     B     C     D     E  A     B     C     D     E

Part B

!
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1. is

(A) !5 (B) " (C) 0 (D) 5 (E) 1

2. is

(A) 0 (B) ln 2 (C) (D) (E) "

3. If y = e!x 2, then y# (0) equals

(A) 2 (B) !2 (C) (D) 0 (E) !4

Questions 4 and 5. Use the following table, which shows the values of the differentiable
functions f and g.

2
e

1
2ln

1
2

lim
ln( ) ln

h

h
h→

+ −
0

2 2

lim
x

x x
x→ ∞

− +
−

20 13 5
5 4

2

3

513

AB Practice Examination 1

The use of calculators is not permitted for this part of the examination.
There are 28 questions in Part A, for which 55 minutes are allowed. To compensate
for possible guessing, the grade on this part is determined by subtracting one-fourth
of the number of wrong answers from the number answered correctly.

Directions: Choose the best answer for each question.

SECTION I 

Part A TIME:  55 MINUTES

x f f ! !g g!

1 2 !3 5

2 3 1 !0 4

3 4 2 !2 3

4 6 4 !3

AB
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1
2

1
2
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4. The average rate of change of function f on [1,4] is

(A) 7/6 (B) 4/3 (C) 15/8 (D) 9/4 (E) 8/3

5. If h(x) = g(f(x)) then h$(3) = 

(A) 1/2 (B) 1 (C) 4 (D) 6 (E) 9

6. The derivative of a function f is given for all x by

f $(x) = x 2(x + 1)3(x – 4)2.

The set of x values for which f is a relative maximum is

(A) {0, !1, 4} (B) {!1} (C) {0, 4}
(D) {1} (E) none of these

7. If y = , then equals

(A) (B) (C)

(D) (E)

8. The maximum value of the function f (x) = xe–x is

(A) (B) e (C) 1 (D) !1 (E) none of these

9. Which equation has the slope field shown below?

(A) (B) (C)

(D) (E)
dy
dx

x y= +dy
dx

y= 5

dy
dx

x
y

=dy
dx x

= 5dy
dx y

= 5

1
e

−
−

13
2 5 2( )x

17
2 5 2( )− x

x
x

−
−

3
2 5 2( )

13
2 5 2( )− x

17 10
2 5 2

−
−

x
x( )

dy
dx

x
x

−
−

3
2 5
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Questions 10–12. The graph below shows the velocity of an object moving along a line, 
for 0 % t % 9.

10. At what time does the object attain its maximum acceleration?

(A) 2 & t & 5 (B) 5 & t & 8 (C) t= 6 (D) t= 8 (E) 8 & t & 9

11. The object is farthest from the starting point at t = 

(A) 2 (B) 5 (C) 6 (D) 8 (E) 9

12. At t = 8, the object was at position x = 10. At t = 5, the object’s position was x = 

(A) !5 (B) 5 (C) 7 (D) 13 (E) 15

13. sin3 ' cos ' d' is equal to

(A) (B) (C) – (D) – (E)

14. dx equals

(A) 3 ln (e!3) (B) 1 (C) (D) (E) none of these

15. A differentiable function has the values shown in this table:

Estimate f $(2.1).

(A) 0.34 (B) 0.59 (C) 1.56 (D) 1.70 (E) 1.91

e
e

−
−

2
3

1
3 − e

e
e

x

x( )3 20

1

−∫

3
4

3
16

1
8

1
8

3
16

π

π

/

/

4

2
∫

2

1

2 4 6 8 10
–1

–2

–3

– 4

t

v

x 2.0 2.2 2.4 2.6 2.8 3.0
f (x) 1.39 1.73 2.10 2.48 2.88 3.30
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16. If A = e–xdx is approximated using Riemann sums and the same number of 

subdivisions, and if L, R, and T denote, respectively left, right, and trapezoid sums,
then it follows that

(A) R % A % T % L (B) R % T % A % L (C) L % T % A % R
(D) L % A % T % R (E) None of these is true.

17. The number of vertical tangents to the graph of y2 = x ! x3 is

(A) 4 (B) 3 (C) 2 (D) 1 (E) 0

18.

(A) (B) (C) dx

(D) (E)

19. The equation of the curve shown below is y = . What does the area of the 

shaded region equal?

(A) 4 – (B) 8 ! 2π (C) 8 ! π (D) 8 ! (E) 2π ! 4

20. Over the interval 0 ≤ x ≤ 10, the average value of the function f shown below 

(A) is 6.00. (B) is 6.10. (C) is 6.25.
(D) does not exist, because f is not continuous.
(E) does not exist, because f is not integrable.

f
y

x

(0,8) (6,7) (10,7)

(6,3)

2

2

4

6

8

4 6 8 10

π
2

π
4

x

y

(–1,0) (1,0)

(0,4)

4
1 2+ x

f x dx( )
1

7
∫f x dx( )

1

5
∫

f x( )+
−∫ 1

1

5
f x dx( )

−∫ 1

5
f x dx( )

−∫ 1

7

f x dx( )− =∫ 1
0

6

0

1
∫
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21. If f !(x) = 2 f (x) and f (2) = 1, then f (x) = 

(A) e2x"4 (B) e2x#1"e4 (C) e4"2x (D) e2x#1 (E) ex"2

22. The table below shows values of f !!(x) for various values of x:

The function f could be

(A) a linear function (B) a quadratic function (C) a cubic function
(D) a fourth-degree function (E) an exponential function

23. The curve x3#x tan y = 27 passes through (3,0). Use the tangent line there to estimate
the value of y at x = 3.1. The value is

(A) "2.7 (B) "0.9 (C) 0 (D) 0.1 (E) 3.0

24. At what value of h is the rate of increase of twice the rate of increase of h?

(A) (B) (C) 1 (D) 2 (E) 4

25. The graph of a function y = f(x) is shown above. Which is true?

(A) f (x) = – ∞ (B) f (x) = ±1 (C) f (x) = 0

(D) f (x) = 0 (E) f (x) = ∞lim
x→ 0

lim
x→ ∞

lim
x→ −2

lim
x→ −∞

lim
x→1

y

x
–1

–1

–2

0 1

1

1
4

1
16

h

x "1 "0 1 2 3
f !!(x) "4 "1 2 5 8

7_4324_APCalc_23ABExam1  10/4/09  5:28 PM  Page 517



518 AP Calculus
AB

 P
ra

ct
ic

e 
Ex

am
in

at
io

n 
1

26. A function f(x) equals for all x except x = 1. For the function to be 

continuous at x = 1, the value of f (1) must be

(A) 0 (B) 1 (C) 2 (D) " (E) none of these

27. The number of inflection points on the graph of f(x) = 3x5 – 10x3 is

(A) 4 (B) 3 (C) 2 (D) 1 (E) 0

28. Suppose f (x) = dt. It follows that

(A) f increases for all x
(B) f increases only if x & !4
(C) f has a local min at x = !4
(D) f has a local max at x = !4
(E) f has no critical points

4
420

+
+∫

t
t

x

x x
x

2

1
−

−

END OF PART A, SECTION I

STOP
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29. Let G(x) = [f(x)]2. At x = a, the graph of f is increasing and concave downward, while
G is decreasing. Which describes the graph of G at x = a?

(A) concave downward (B) concave upward (C) linear
(D) point of inflection (E) none of these

30. The value of c for which f(x) = x + has a local minimum at x = 3 is

(A) !9 (B) !6 (C) !3 (D) 6 (E) 9

31. An object moving along a line has velocity v (t)= t cos t ! ln (t ( 2), where 0 % t % 10.
The object achieves its maximum speed when t is approximately

(A) 3.7 (B) 5.1 (C) 6.4 (D) 7.6 (E) 9.5

32. The graph of f $, which consists of a quarter-circle and two line segments, is shown
above. At x = 2 which of the following statements is true?

(A) f is not continuous.
(B) f is continuous but not differentiable.
(C) f has a relative maximum.
(D) The graph of f has a point of inflection.
(E) none of these

4321
x

f ′

c
x

Some questions in this part of the examination require the use of a graphing 
calculator. There are 17 questions in Part B, for which 50 minutes are allowed. 
The deduction for incorrect answers on this part is the same as that for Part A. 

Directions: Choose the best answer for each question. If the exact numerical value 
of the correct answer is not listed as a choice, select the choice that is closest to the 
exact numerical answer.

Part B TIME:  50 MINUTES
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33. Let H(x) = f (t) dt, where f is the function whose graph appears below.

The local linearization of H(x) near x = 3 is H(x)!

(A) !2x " 8 (B) 2x ! 4 (C) !2x " 4 (D) 2x ! 8 (E) 2x ! 2

34. The table shows the speed of an object, in feet per second, at various times during a
6-second interval. 

Estimate the distance the object travels, using the trapezoid method.

(A) 89 ft (B) 90 ft (C) 96 ft (D) 120 ft (E) 147 ft

35. In a marathon, when the winner crosses the finish line many runners are still on 
the course, some quite far behind. If the density of runners x miles from the finish
line is given by R(x) = 20[1 ! cos(1 " 0.03x2)] runners per mile, how many are
within 8 miles of the finish line?

(A) 30 (B) 145 (C) 157 (D) 166 (E) 195

36. Which best describes the behavior of the function y = arc tan at x = 1?

(A) It has a jump discontinuity.
(B) It has an infinite discontinuity.
(C) It has a removable discontinuity.
(D) It is both continuous and differentiable.
(E) It is continuous but not differentiable.

1
ln x







2

3

4

1

654321

–1

–2 (1,–2)

(4,4)

f

0

x
∫

time (sec) 00 01 04 6

speed (ft/sec) 30 22 12 0
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37. If f (t) = dx, then f $(t) equals

(A) (B) (C) (D) (E) tan!1 t2

38. =

(A) x3/2 – 2x + C (B) x3/2 – 4x + C (C) x3/2 – 2x + + C

(D) x5/2 – x3 + C (E) x7/2 – x3 + C

39. The region S in the figure shown above is bounded by y = sec x and y = 4. What is the
volume of the solid formed when S is rotated about the x-axis?

(A) 0.304 (B) 39.867 (C) 53.126 (D) 54.088 (E) 108.177

40. At which point on the graph of y = f (x) shown above is f $(x) < 0 and f $$(x) > 0?

(A) A (B) B (C) C (D) D (E) E

x

y

0

A

B

C

D

E

y = f(x)

y

S

y = sec x

y = 4

x
0

2
3

2
7

2
3

2
5

x3

3
2
3

5
2

2
3

( )x x dx∫ − 2 2

2
1 4

t
t+

1
1 4+ t

2
1 2

t
t+

1
1 2+ t

1
1 20

2

+∫ x
t
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41. Let f(x) = x5 + 1, and let g be the inverse function of f. What is the value of g$(0)?

(A) !1 (B) (C) 1 (D) g$(0) does not exist.

(E) g$(0) cannot be determined from the given information.

42. The hypotenuse AB of a right triangle ABC is 5 feet, and one leg, AC, is decreasing at
the rate of 2 feet per second. The rate, in square feet per second, at which the area is
changing when AC = 3 is

(A) (B) (C) – (D) – (E) –

43. At how many points on the interval [0,π] does f(x) = 2 sin x + sin 4x satisfy the 
Mean Value Theorem?

(A) none (B) 1 (C) 2 (D) 3 (E) 4

44. If the radius r of a sphere is increasing at a constant rate, then the rate of increase of
the volume of the sphere is

(A) constant
(B) increasing
(C) decreasing
(D) increasing for r & 1 and decreasing for r ) 1
(E) decreasing for r & 1 and increasing for r ) 1

45. The rate at which a purification process can remove contaminants from a tank 
of water is proportional to the amount of contaminant remaining. If 20% of the 
contaminant can be removed during the first minute of the process and 98% must be
removed to make the water safe, approximately how long will the decontamination
process take?

(A) 2 min (B) 5 min (C) 18 min (D) 20 min (E) 40 min

7
2

7
4

3
2

7
4

25
4

1
5

END OF SECTION I

STOP
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SECTION II 

Part A TIME:  45 MINUTES

3 PROBLEMS

A graphing calculator is required for some of these problems. 
See instructions on page 4.

1. A function f is defined on the interval [0,4], and its derivative is 
f $(x) = esinx - 2 cos 3x. 

(a) Sketch f $ in the window [0,4] ¥ [–2,5].

(Note that the following questions refer to f.)

(b) On what interval is f increasing? Justify your answer.

(c) At what value(s) of x does f have local maxima?  Justify your answer.

(d) How many points of inflection does the graph of f have? Justify your answer.

2. The rate of sales of a new software product is given by S(t) = Cekt, where S is 
measured in thousands of units sold per month and t is measured in months from the
initial release of the product on January 1, 2007.

(a) This product initially sold at the rate of 2500 units per month, and the sales rate
has doubled every 3 months. Find C and k.

(b) Find the average rate of sales for the first year.

(c) Using the midpoint rule with three equal subdivisions, write an expression that 

approximates dt.

(d) Using correct units, explain the meaning of dt in terms of software sales.

3. (a) A spherical snowball melts so that its surface area shrinks at the constant rate of
10 square centimeters per minute. What is the rate of change of volume when the
snowball is 12 centimeters in diameter?

(b) The snowball is packed most densely nearest the center. Suppose that, when it
is 12 centimeters in diameter, its density x centimeters from the center is given 

by grams per cubic centimeter. What is the total number of grams 

(mass) of  the snowball then?

d x
x

( ) =
+

1
1

S t( )
4

7

∫

S t( )
4

7

∫

END OF PART A, SECTION II

STOP
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Part B TIME:  45 MINUTES

3 PROBLEMS

No calculator is allowed for any of these problems.
If you finish Part B before time has expired, you may return to work on Part A, but you
may not use a calculator.

4. The graph of function y = f (x) passes through point (2, 5) and satisfies the differential 

equation

(a) Write an equation of the line tangent to f at (2, 5).

(b) Using this tangent line, estimate f (2.1).

(c) Solve the differential equation, expressing f as a function of x.

(d) Using your answer to part (c), find f (2.1).

5. Let R represent the first-quadrant region bounded by the y-axis and the curves 

y = 2x and y = 8 cos , as shown in the graph.

(a) Find the area of region R.

(b) Set up, but do not evaluate, integrals in terms of a single variable for:

(i) the volume of the solid formed when R is rotated around the x-axis,

(ii) the volume of the solid whose base is R, if all cross sections in planes 
perpendicular to the x-axis are squares.

10

1

–1
–1

1 2 3 4
x

y

R

πx
6

dy
dx

x
y

= −6 42

.
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6. Given the function f(x) = e2x(x2 - 2):

(a) For what values of x is f decreasing? 

(b) Does this decreasing arc reach a local or a global minimum? 
Justify your answer.

(c) Does f have a global maximum? Justify your answer.

END OF TEST

STOP
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Answer Key
A B  P R A C T I C E  E X A M I N A T I O N  1

11. C
12. C
13. B
14. B
15. B
16. E
17. E

18. A
19. A
10. E
11. C
12. D
13. A
14. E

15. D
16. A
17. B
18. B
19. B
20. B
21. A

22. C
23. B
24. A
25. D
26. B
27. B
28. C

29. B
30. E
31. E
32. D
33. D

34. A
35. D
36. A
37. D

38. E
39. E
40. A
41. B

42. D
43. E
44. B
45. C

Part A

Part B
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ANSWERS EXPLAINED

Multiple-Choice

Part A

1. (C) Use the Rational Function Theorem on page 96.

2. (C) Note that = f $(2), where f(x) = ln x.

3. (B) Since y$ = –2xe–x2, therefore y$$ = –2(x · e–x2 · (–2x) + e–x2). Replace x by 0.

4. (B) .

5. (B) h$(3) = g$(f(3)) · f $(3) = g$(4) · f $(3) = · 2.

6. (E) Since f $(x) exists for all x, it must equal 0 for any x0 for which f is a relative
maximum, and it must also change sign from positive to negative as x in-
creases through x0. For the given derivative, no x satisfies both of these con-
ditions.

7. (E) By the Quotient Rule (formula (6) on page 113),

= .

8. (A) Here, f $(x) is e!x (1 ! x); f has maximum value when x = 1.

9. (A) Note that (1) on a horizontal line the slope segments are all parallel, so the 

slopes there are all the same and must depend only on y; (2) along the 

x-axis (where y = 0) the slopes are infinite; and (3) as y increases, the slope
decreases.

10. (E) Acceleration is the derivative (the slope) of velocity v; v is largest on 8 & t & 9.

11. (C) Velocity v is the derivative of position; because v ) 0 until t = 6 and v & 0
thereafter, the position increases until t = 6 and then decreases; since the
area bounded by the curve above the axis is larger than the area below the
axis, the object is farthest from its starting point at t = 6.

12. (D) From t = 5 to t = 8, the displacement (the integral of velocity) can be found
by evaluating definite integrals based on the areas of two triangles: 

(1)(2) – (2)(4) = –3. Thus, if K is the object’s position at t = 5, then 

K ! 3 = 10 at t = 8.

13. (A) The integral is of the form u3du; evaluate .
1
4

4

4

2
sin

/

/
α

π

π

∫

1
2

1
2

dy
dx

( )( ) ( )( )
( )

2 5 1 3 5
2 5 2

− − − −
−

x x
x

dy
dx

1
2

f f( ) ( )4 1
4 1

6 2
4 1

4
3

−
−

= −
−

=

lim
ln( ) ln

h

h
h→

+ −
0

2 2
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14. (E) – (3 – ex)–2(–exdx) = = .

15. (D) f ′(2.1) ! .

16. (A) f(x) = e–x is decreasing and concave upward.

17. (B) Implicit differentiation yields 2yy′ = 1; so = . At a vertical

tangent, is undefined; y must therefore equal 0 and the numerator be 

non-zero. The original equation with y = 0 is 0 = x ! x3, which has three 
solutions.

18. (B) Let t = x ! 1; then t = –1 when x = 0, t = 5 when x = 6, and dt = dx.

19. (B) The required area, A, is given by the integral

2 dx = 2(4x – 4 tan–1 x) = .

20. (B) The average value is f(x)dx. The definite integral represents the 

sum of the areas of a trapezoid and a rectangle: (8 + 3)(6) = 4(7) = 61.

21. (A) Solve the differential equation = 2y by separation of variables: = 2dx

yields y = ce2x. The initial condition yields 1 = ce2 · 2; so c = e!4 and y = e2x!4.

22. (C) Changes in values of f ″ show that f ″′ is constant; hence f ″ is linear, f ′ is
quadratic, and f must be cubic.

23. (B) By implicit differentiation, 3x2 + x sec2 y + tan y = 0. At (3,0), = –9; 

so the equation of the tangent line at (3,0) is y = !9(x!3).

24. (A) (h1/2)′ = 2h′ implies h–1/2 = 2.

25. (D) The graph shown has the x-axis as a horizontal asymptote.

26. (B) Since f(x) = 1, to render f (x) continuous at x = 1 f(1) must be defined 

to be 1.

27. (B) f ′(x) = 15x4 – 30x2; f ″(x) = 60x3 – 60x = 60x(x + 1)(x – 1); this equals 0
when x = !1, 0, or 1. Here are the signs within the intervals:

The graph of f changes concavity at x = –1, 0, and 1.

lim
x→1

1
2

dy
dx

dy
dx

dy
y

dy
dx

1
2

1
10 0 0

10

− ∫

2 4 4
4

− ⋅





π
0

1

4
4

1 20

1 −
+





∫ x

dy
dx

1 3
2

2− x
y

dy
dx

f f( . ) ( . )
. .

2 2 2 0
2 2 2 0

−
−

e
e

−
−
1

2 3( )
1

3 0

1

− ex0

1
∫

! ( ! (

!1 0 1

signs of f #
x
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28. (C) Note that f ′(x) = , so f has a critical value at x = !4. As x passes 

through !4, the sign of f ′ changes from ! to (, so f has a local minimum
at x = !4.

Part B
29. (B) We are given that (1) f ′(a) > 0; (2) f ′′(a) < 0; and (3) G′(a) < 0. Since 

G′(x) * 2f(x) · f ′(x), therefore G′(a) * 2f(a) · f ′(a). Conditions (1) and (3)
imply that (4) f(a) < 0. Since G#(x) * 2[f (x) · f # (x) ( (f $(x))2], 
therefore G#(a) * 2[f (a) f # (a) ( (f $(a))2]. Then the sign of G#(a) is 
2[(!) · (!) ( (()] or positive, where the minus signs in the parentheses 
follow from conditions (4) and (2).

30. (E) Since f ′(x) = 1 – , it equals 0 for . When x = 3, c = 9; this yields

a minimum since f ′′(3) > 0.

31. (E) Use your calculator to graph velocity against time. Speed is the absolute 
value of velocity. The greatest deviation from v = 0 is at t = c. With a calcu-
lator, c = 9.538.

32. (D) Because f$ changes from increasing to decreasing, f ′′ changes from positive
to negative and thus the graph of f changes concavity.

33. (D) H(3) = f(t)dt. We evaluate this definite integral by finding the area of a 

trapezoid (negative) and a triangle: H(3) = – (2 + 1)(2) + (1)(2) = –2, so 

the tangent line passes through the point (3,–2). The slope of the line is 
H ′(3) = f(3) = 2, so an equation of the line is y – (–2) = 2(x – 3).

1
2

1
2

0

3
∫

6

–10

10
a b c

v

t

 x c= ±c
x2

4
42

+
+

x
x
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34. (A) The distance is approximately .

35. (D)

36. (A) Selecting an answer for this question from your calculator graph is unwise.
In some windows the graph may appear continuous; in others there may
seem to be cusps, or a vertical asymptote. Put the calculator aside. Find

.

These limits indicate the presence of a jump discontinuity in the function at 
x = 1.

37. (D) When u = t2,

38. (E)

39. (E) In the figure above, S is the region bounded by y = sec x, the y axis, and 
y = 4. Send region S about the x-axis. Use washers; then !V = π(R2 " r2) !x.
Symmetry allows you to double the volume generated by the first quadrant
of S, so V is

2π (16 – sec2 x) dx.

A calculator yields 108.177.

40. (A) The curve falls when f ′(x) < 0 and is concave up when f ″(x) > 0.

41. (B) g′(y) = . To find g#(0), find x such that f(x) = 0. By inspection, 

x = "1, so g′(0) = .
1

5 1
1
54( )−

=

1 1
5 4′

=
f x x( )

0

1
4

arccos
∫

x

y

0

(x,4)

(x,y)

R

r

( ) ( ) .x x dx x x dx x x C− = − = − +∫ ∫2 2
2
7

2
3

2 5 2 2 7 2 3

d
dt x

dx
u

du
dt t

t
u 1
1

1
1

1
1

22 20 4+
=

+
=

+∫ ( ).

 
d
du x

dx
u

u 1
1

1
120 2+

=
+Ú .

lim
x xx xÆ Æ+ -

Ê
Ë

ˆ
¯

Ê
ËÁ

ˆ
¯̃ = Ê

Ë
ˆ
¯

Ê
ËÁ

ˆ
¯̃ = -

1 12 2
arctan

1
ln 

 and lim arctan
1

ln 
p p

 
R x dx( ) =Ú0

8

166 396. .

30 22
2

1
22 12

2
3

12 0
2

2
+



 + +



 + +



( ) ( ) ( )
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42. (D) It is given that = –2; you want , where A = xy.

.

Since y2 = 25!x2, it follows that 2y = –2x and, when x = 3, y = 4 

and = .

Then = – .

The function f(x) = 2 sin x + sin 4x is graphed above.

43. (E) Since f (0) = f (π) and f is both continuous and differentiable, Rolle’s
Theorem predicts at least one c in the interval such that f ′(c) = 0.

There are four points in [0,π] of the calculator graph above where the
tangent is horizontal.

1

1

f

x
0 π

7
4

dA
dt

3
2

dy
dt

dx
dt

dy
dt

 

dA
dt

x
dy
dt

y
dx
dt

dy
dt

y= +



 = + −1

2
1
2

3 2i i ( ))





1
2

dA
dt

dx
dt

5

A

B

y

Cx
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44. (B) Since = k, a positive constant, = 4πr2 = 4πr2 k = cr2, where c is a 

positive constant. Then = 2cr = 2crk, which is also positive.

45. (C) If Q(t) is the amount of contaminant in the tank at time t and Q0 is the initial
amount, then

= kQ and Q(t) = Q0e
kt.

Since Q(1) = 0.8Q0, 0.8Q0 = Q0e
k .1, 0.8 = ek, and

Q(t) = Q0(0.8)t.

We seek t when Q(t) = 0.02Q0. Thus,

0.02Q0 = Q0(0.8)t

and

t !17.53 min.

Free-Response

Part A
AB/BC 1. (a) This is the graph of f ¢(x).

(b) f is increasing when f ¢(x) > 0. The graph shows this to be true in the inter-
val a < x < b. Use the calculator to find a and b (where ex – 2 cos 3x = 0);
then a = 0.283 < x < 3.760 = b.

a b

5.0

-2.0

q r

f ¢(x)

4.0p

dQ
dt

dr
dt

d V
dt

2

2

dr
dt

dV
dt

dr
dt
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(c) See signs analysis.

Since f decreases to the right of endpoint x = 0, f has a local maximum at
x = 0. There is another local maximum at x = 3.760, because f changes
from increasing to decreasing there.

(d) See signs analysis.

Since the graph of f changes concavity at p, q, and r, there are three points
of inflection.

AB2. (a) S is measured in thousands of units sold per month, so the initial rate of
2500 units per month means that S = 2.5 when t = 0. Substitute these 
values in S(t) = Cekt to see that 2.5 = Cek•0 and thus C = 2.5. If the rate
doubles every 3 months, then S = 5 when t = 3. Substitute these values
and solve for k:

5 = 2.5e3k,
2 = e3k,

k = " 0.231.

(b) Average S = = = 13.525 thousands, or 13,525 

units per month.

(c) To create three equal subdivisions of the interval [4,7], use t = 5 and t = 6.
Then Dt = 1, and the midpoints of the subintervals are at t = 4.5, 5.5, and
6.5. By the midpoint rule

S(t) dt # Dt(S(4.5) + S(5.5) + S(6.5))

# 1(2.5e0.231(4.5) + 2.5e0.231(5.5) + 2.5e0.231(6.5)).

(d) S(t) dt represents the number of units sold, in thousands, during May,

June, and July in 2007.
 $4

7

 $4

7

$
0

12
2 5

12

0 231. .e dtt$
0

12

12 0
S t dt( )

−

ln 2
3

4

f ¢

0

inc dec inc dec

f ¢¢ + – + –

f conc
up

conc
down

conc
up

conc
down

p rq

f

f ¢

0 4

– +

dec

–

decinca b
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AB/BC 3. (a) S = 4pr2, so = 8pr . Substitute given values; then 

-10 = 8p(6) , so = - cm/min.

Since V = πr3, therefore = 4πr2 . Substituting known values  

gives = 4π(62) • = -30 cm3/min.

(b) Regions of consistent density are concentric spherical shells. The volume
of each shell is approximated by its surface area (4px2) times its thickness
(Dx). The weight of each shell is its density times its volume (g/cm3·cm3).
If, when the snowball is 12 cm in diameter, DG is the weight of a spherical 

shell x cm from the center, then DG = • 4px2Dx, and the weight of

the snowball is

G = • 4px2dx = 295.223 g.

Part B

AB 4. (a) At (2,5), = = 4, so the tangent line is y - 5 = 4(x - 2).

Solving for y yields f(x) # 5 + 4(x - 2).

(b) f(2.1) # 5 + 4(2.1 - 2) = 5.4.

(c) The differential equation = is separable:

$ydy = $(6x2 - 4)dx,

= 2x3 - 4x + C,

y = ± , where c = 2C.

Since f passes through (2,5), it must be true that 5 = ± .

Thus c = 9, and the positive root is used.

The solution is f(x) = .

(d) f(2.1) = = 5.408.4 2 1 8 2 1 93( . ) ( . )− +

4 8 93x x− +

4 2 8 23( ) ( )− + c

4 82x x c− +

y2

2

6 4
5

2x −dy
dx

6 2 4
5

2( ) −dy
dx

 
$

0

6 1
1 + x

1
1 + x

−5
24π

dV
dt

dr
dt

dV
dt

4
3

5
24π

dr
dt

dr
dt

dr
dt

dS
dt
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AB 5. (a) Draw a vertical element of area, as shown.

(b) (i) Use washers; then

   

D D DV r r x y y x

V
x

dxx

= - = -

= Ê
Ë

ˆ
¯ -

È

Î
Í

˘

˚
˙

( ) ( ) ,

cos ( ) .

2
2

1
2 2 2

0

2 2
28

6
2

p

p p

top bottom

$

   

D D DA y y x
x

x

A
x

dx

x
dx dx

x

x

x

x

x

= - = -Ê
Ë

ˆ
¯

= -Ê
Ë

ˆ
¯

= -

= -

= -Ê
Ë

ˆ
¯ - -Ê

ËÁ
ˆ
¯̃

=

( ) cos ,

cos

cos

sin
ln

sin sin
ln ln

•

•
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6

2

8
6

2

6
8

6
2

48
6

2
2

48
3

0
2

2
2

2

24 3

0

2

0

2

0

2

0

2

0

2

2 0

p

p
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p
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p
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p
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$ $
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.
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∆A
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(ii) See the figure above.

AB/BC 6. (a) f(x) = e2x(x2 - 2),
f ¢(x) = e2x(2x) + 2e2x(x2 - 2)

= 2e2x(x + 2)(x - 1)
= 0 at x = -2, 1.

f is decreasing where f ¢(x) < 0, which occurs for -2 < x < 1.

(b) f is decreasing on the interval -2 < x < 1, so there is a minimum at (1,-e2).
Note that, as x approaches ±•, f(x) = e2x(x2 - 2) is always positive. Hence
(1,-e2) is the global minimum.

(c) As x approaches +•, f(x) = e2x(x2 - 2) also approaches +•. There is no
global maximum.

 

∆ ∆ ∆V s x y y x

V
x

dxx

= = −

= −





2 2

0

2 2

8
6

2

( ) ,

cos .

top bottom

$ π

y  top

y bottom

(2,4)

8

x

y

21
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1   A     B     C     D     E  A     B     C     D     E

2   A     B     C     D     E  A     B     C     D     E

3   A     B     C     D     E  A     B     C     D     E

4   A     B     C     D     E  A     B     C     D     E

5   A     B     C     D     E  A     B     C     D     E

6   A     B     C     D     E  A     B     C     D     E

7   A     B     C     D     E  A     B     C     D     E

8   A     B     C     D     E  A     B     C     D     E

9   A     B     C     D     E  A     B     C     D     E

10   A     B     C     D     E  A     B     C     D     E

11   A     B     C     D     E  A     B     C     D     E

12   A     B     C     D     E  A     B     C     D     E

13   A     B     C     D     E  A     B     C     D     E

14   A     B     C     D     E  A     B     C     D     E

15   A     B     C     D     E  A     B     C     D     E

16   A     B     C     D     E  A     B     C     D     E

17   A     B     C     D     E  A     B     C     D     E

18   A     B     C     D     E  A     B     C     D     E

19   A     B     C     D     E  A     B     C     D     E

20   A     B     C     D     E  A     B     C     D     E

21   A     B     C     D     E  A     B     C     D     E

22   A     B     C     D     E  A     B     C     D     E

23   A     B     C     D     E  A     B     C     D     E

24   A     B     C     D     E  A     B     C     D     E

25   A     B     C     D     E  A     B     C     D     E

26   A     B     C     D     E  A     B     C     D     E

27   A     B     C     D     E  A     B     C     D     E

28   A     B     C     D     E  A     B     C     D     E

29   A     B     C     D     E  A     B     C     D     E

30   A     B     C     D     E  A     B     C     D     E

31   A     B     C     D     E  A     B     C     D     E

32   A     B     C     D     E  A     B     C     D     E

33   A     B     C     D     E  A     B     C     D     E

34   A     B     C     D     E  A     B     C     D     E

35   A     B     C     D     E  A     B     C     D     E

36   A     B     C     D     E  A     B     C     D     E

37   A     B     C     D     E  A     B     C     D     E

38   A     B     C     D     E  A     B     C     D     E

39   A     B     C     D     E  A     B     C     D     E

40   A     B     C     D     E  A     B     C     D     E

41   A     B     C     D     E  A     B     C     D     E

42   A     B     C     D     E  A     B     C     D     E

43   A     B     C     D     E  A     B     C     D     E

44   A     B     C     D     E  A     B     C     D     E

45   A     B     C     D     E  A     B     C     D     E

Answer Sheet
A B  P R A C T I C E  E X A M I N A T I O N  2

Part A

29   A     B     C     D     E  A     B     C     D     E

30   A     B     C     D     E  A     B     C     D     E

31   A     B     C     D     E  A     B     C     D     E

32   A     B     C     D     E  A     B     C     D     E

33   A     B     C     D     E  A     B     C     D     E

34   A     B     C     D     E  A     B     C     D     E

35   A     B     C     D     E  A     B     C     D     E

36   A     B     C     D     E  A     B     C     D     E

37   A     B     C     D     E  A     B     C     D     E

38   A     B     C     D     E  A     B     C     D     E

39   A     B     C     D     E  A     B     C     D     E

40   A     B     C     D     E  A     B     C     D     E

41   A     B     C     D     E  A     B     C     D     E

42   A     B     C     D     E  A     B     C     D     E

43   A     B     C     D     E  A     B     C     D     E

44   A     B     C     D     E  A     B     C     D     E

45   A     B     C     D     E  A     B     C     D     E

Part B

!
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11. is

(A) !2 (B) !1 (C) (D) 0 (E) nonexistent

2. is

(A) – (B) !1 (C) " (D) 0 (E)

3. If y = , then equals

(A) (B) eln u (C) (D) 1 (E) 0

4. Using the line tangent to f (x) = at x = 0, an estimate of f (0.06) is

(A) 0.02 (B) 2.98 (C) 3.01 (D) 3.02 (E) 3.03

5. Air is escaping from a balloon at a rate of R(t) = cubic feet per minute, where

t is measured in minutes. How much air, in cubic feet, escapes during the first
minute?

(A) 15 (B) 15π (C) 30 (D) 30π (E) 30 ln 2

60
1 2+ t

9 2+ sin( )x

2
2

e
u

ulne
u

uln

2

dy
du

e
u

uln

1
3

1
3

lim
x

x
x→ ∞

−
−

4
4 3

1
2

lim
x

x
x→

−
−2

2

2

2
4

539

AB Practice Examination 2

The use of calculators is not permitted for this part of the examination.
There are 28 questions in Part A, for which 55 minutes are allowed. To compensate
for possible guessing, the grade on this part is determined by subtracting one-fourth
of the number of wrong answers from the number answered correctly.

Directions: Choose the best answer for each question.

SECTION I 

Part A TIME:  55 MINUTES
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2
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6. If y = sin3 (1 ! 2x), then is

(A) 3 sin2 (1 ! 2x) (B) !2 cos3 (1 ! 2x) (C) !6 sin2 (1 ! 2x)
(D) !6 sin2 (1 ! 2x) cos (1 ! 2x) (E) !6 cos2 (1 ! 2x)

7. If y = x2e1/x (x | 0), then is

(A) xe1/x (x " 2) (B) e1/x (2x ! 1) (C)

(D) e!x (2x ! x2) (E) none of these

8. A point moves along the curve y = x2 " 1 so that the x-coordinate is increasing at the

constant rate of units per second. The rate, in units per second, at which the 

distance from the origin is changing when the point has coordinates (1, 2) is equal to

(A) (B) (C) (D) (E)

9.

(A) = 0 (B) = (C) = 1 (D) = 10 (E) does not exist

10. The base of a solid is the first-quadrant region bounded by y = . Each cross 
section perpendicular to the x-axis is a square with one edge in the xy-plane. The 
volume of the solid is

(A) (B) (C) 1 (D) (E) π

11. equals

(A) (B) (C)

(D) (E) 2 9 2− +x C− − +1
4

9 2x C

− − +9 2x Csin− +1

3
x

C− − +1
2

9 2ln x C

x dx

x9 2−
∫

π
2

π
4

2
3

1 24 − x

1
10

lim
h

h
h→

+ −
0

25 5

5
15
2

3 5
3 5

2
7 5
10

3
2

− 2 1e
x

x/

dy
dx

dy
dx

7_3679_APCalc_24ABExam2  10/3/08  4:34 PM  Page 540



AB Practice Examination 2 541

AB
 P

ra
ct

ic
e 

Ex
am

in
at

io
n 

2

12. dy equals

(A) (B) y2 – y + ln|2y | + C (C)

(D) (E)

13. cot x dx equals

(A) ln (B) ln 2 (C) –ln(2 – )

(D) ln( – 1) (E) none of these

14. Given f # as graphed, which could be a graph of f ?

(A) I only (B) II only (C) III only
(D) I and III (E) none of these

15. The first woman officially timed in a marathon was Violet Piercey of Great Britain in
1926. Her record of 3:40:22 stood until 1963, mostly because of a lack of women
competitors. Soon after, times began dropping rapidly, but lately they have been de-
clining at a much slower rate. Let M(t) be the curve that best represents winning
marathon times in year t. Which of the following is (are) negative for t > 1963?

I. M(t)
II. M#(t)

III. M$(t)

(A) I only (B) II only (C) III only
(D) II and III (E) none of these

3

3
1
2

π

π

/

/

6

2
∫

1
2

1
2 2− +

y
C

( )y
y

C
− +1

3

3

2

y y y C2 4
1
2

2− + +ln
y

y y C
2

4
1
2

− + +ln

( )y
y

−
∫

1
2

2
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16. The graph of f is shown above. Let G(x) = f(t)dt and H(x) = f (t) dt. Which of 

the following is true?

(A) G(x) = H(x) (B) G #(x) = H #(x " 2) (C) G(x) = H(x " 2)
(D) G(x) = H(x) ! 2 (E) G(x) = H(x) " 3

17. The minimum value of f (x) = x2 + on the interval ≤ x ≤ 2 is

(A) (B) 1 (C) 3 (D) 4 (E) 5

18. Which function could be a particular solution of the differential equation whose slope
field is shown above?

(A) y = x3 (B) (C) (D) y = sin x (E) y = e-x2y
x

x
=

+

2

2 1
y

x
x

=
+

2
12

1
2

1
2

1
2

2
x

2

x
∫0

x
∫
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19. Which of the following functions could have the graph sketched below?

(A) f (x) = xex (B) f(x) = xe–x (C) f(x) = 

(D) f(x) = (E) f(x) = 

Questions 20—22. Use the graph below, consisting of two line segments and a quarter-
circle. The graph shows the velocity of an object during a 6-second interval.

20. For how many values of t in the interval 0 < t < 6 is the acceleration undefined?

(A) none (B) one (C) two (D) three (E) four

21. During what time interval (in sec) is the speed increasing?

(A) 0 % t % 3 (B) 3 % t % 5 (C) 3 % t % 6
(D) 5 % t % 6 (E) never

22. What is the average acceleration (in units/sec2) during the first 5 seconds?

(A) – (B) !1 (C) – (D) (E)
1
2

1
5

1
5

5
2

v

t (sec)

x
x

2

3 1+
x

x2 1+

e
x

x
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23. The curve of y = has

(A) two horizontal asymptotes
(B) two horizontal asymptotes and one vertical asymptote
(C) two vertical asymptotes but no horizontal asymptote
(D) one horizontal and one vertical asymptote
(E) one horizontal and two vertical asymptotes

24. Suppose

Which statement is true?

(A) f is discontinuous only at x = !2.
(B) f is discontinuous only at x = 1.
(C) If f (!2) is defined to be 4, then f will be continuous everywhere.
(D) f is continuous everywhere.
(E) f is discontinuous at x = !2 and at x = 1.

25. The function f(x) = x5 + 3x – 2 passes through the point (1,2). Let f !1 denote the 
inverse of f. Then ( f !1) #(2) equals

(A) (B) (C) 1 (D) 8 (E) 83

26. dx = 

(A) (B) e (C) (e – 1) (D) (E)

27. Which of the following statements is (are) true about the graph of y = ln (4 " x2)?

I. It is symmetric to the y-axis.
II. It has a local minimum at x = 0.

III. It has inflection points at x = &2.

(A) I only (B) II only (C) III only
(D) I and II only (E) I, II, and III

28. Let f(t) dt = x sin πx. Then f (3) =

(A) !3π (B) !1 (C) 0 (D) 1 (E) 3π

0

x
∫

e4 1
4
−e4

4
1
4

1
4

1
4

ln3

1

x
x

e
∫

1
8

1
83

 

f x

x x

x

x

( )

– ,

– ,=
<

<
−

2 2

4 2 1

6

if

if '

if x >







 1.

2
4

2

2

x
x−

END OF PART A, SECTION I

STOP
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29. The area bounded by the curve x = 3y ! y2 and the line x = !y is represented by

(A) (2y – y2) dy (B) (4y – y2) dy (C) (3y – y2) dy + y dy

(D) (y2 – 4y) dy (E) (2y – y2) dy

30. The region bounded by y = ex, y = 1, and x = 2 is rotated about the x-axis. The 
volume of the solid generated is given by the integral:

(A) π e2x dx (B) 2π (2 – ln y)(y – 1) dy (C) π (e2x – 1) dx

(D) 2π y(2 – ln y) dy (E) π (ex – 1)2 dx

31. A particle moves on a straight line so that its velocity at time t is given by 

v = 12 , where s is its distance from the origin. If s = 1 when t = 0, then, when 

t = 1, s equals

(A) 0 (B) (C) 7 (D) 8 (E) 497

s

0

2
∫0

2e
∫

0

2
∫1

2e
∫0

2
∫

0

3
∫0

4
∫

0

4
∫0

3
∫0

4
∫0

4
∫

Some questions in this part of the examination require the use of a graphing 
calculator. There are 17 questions in Part B, for which 50 minutes are allowed. 
The deduction for incorrect answers on this part is the same as that for Part A. 

Directions: Choose the best answer for each question. If the exact numerical value 
of the correct answer is not listed as a choice, select the choice that is closest to the 
exact numerical answer.

Part B TIME:  50 MINUTES
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labeled A and B have equal areas if k = 

(A) 5 (B) 7.766 (C) 7.899 (D) 8 (E) 11

33. Bacteria in a culture increase at a rate proportional to the number present. An initial
population of 200 triples in 10 hours. If this pattern of increase continues unabated,
then the approximate number of bacteria after 1 full day is

(A) 1160 (B) 1440 (C) 2408 (D) 2793 (E) 8380

34. When the substitution x = 2t ! 1 is used, the definite integral dt may be 

expressed in the form k (x + 1) dx, where {k, a, b} = 

(A) (B) (C)

(D) (E)
1
2

5 9, ,







1
2

2 3, ,







1
4

5 9, ,







1
4

3 5, ,







1
4

2 3, ,







x
a

b
∫

t t2 1
3

5 −∫
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35. The curve defined by x3 ! xy " y2 = 10 has a vertical tangent line when x = 

(A) 0 or – (B) 1.037 (C) 2.074 (D) 2.096 (E) 2.154

Use the graph of f shown on [0,7] for Questions 36 and 37. Let G(x) = f(t) dt.

36. G #(1) is

(A) 1 (B) 2 (C) 3 (D) 6 (E) undefined

37. G has a local maximum at x = 

(A) 1 (B) (C) 2 (D) 5 (E) 8

38. The slope of the line tangent to the curve y = (arctan (ln x))2 at x = 2 is

(A) "0.563 (B) "0.409 (C) "0.342 (D) 0.409 (E) 0.563

39. Using the left rectangular method and four subintervals of equal width, estimate 

, where f is the function graphed below.

(A) 4 (B) 5 (C) 8 (D) 15 (E) 16

f t dt( )∫0

8

4
3

2

3 1x −
∫

1
3
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40. Suppose f (3) = 2, f ′(3) = 5, and f ′′(3) = –2. Then at x = 3 is equal to

(A) !20 (B) 10 (C) 20 (D) 38 (E) 42

41. The velocity of a particle in motion along a line (for t ≥ 0) is v(t) = ln(2 – t2). Find the
acceleration when the object is at rest.

(A) –2 (B) 0 (C) (D) 0 (E) none of these

42. Suppose f (x) = x3 + x, x > 0 and x is increasing. The value of x for which the rate 

of increase of f is 10 times the rate of increase of x is

(A) 1 (B) 2 (C) (D) 3 (E)

43. The rate of change of the surface area, S, of a balloon is inversely proportional to the
square of the surface area. Which equation describes this relationship?

(A) S(t) = (B) S(t) = (C)

(D) (E)

44. Two objects in motion from t = 0 to t = 3 seconds have positions x1(t) = cos(t2 " 1) 

and x2(t) = , respectively. How many times during the 3 seconds do the objects 

have the same velocity?

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

45. After t years, 50e !0.015t pounds of a deposit of a radioactive substance remain. 
The average amount per year not lost by radioactive decay during the second 
hundred years is

(A) 2.9 lb (B) 5.8 lb (C) 7.4 lb (D) 11.1 lb (E) none of these

e
t

t

2

dS
dt

k
t

= 2

dS
dt

S
k

=
2

dS
dt

k
S

= 2
k

S2

k
t2

10103

1
3

1
2

d
dx

f x
2

2
2( )( )

END OF SECTION I

STOP

7_4324_APCalc_24ABExam2  10/4/09  5:40 PM  Page 548



AB Practice Examination 2 549

AB
 P

ra
ct

ic
e 

Ex
am

in
at

io
n 

2

SECTION II 

Part A TIME:  45 MINUTES

3 PROBLEMS

A graphing calculator is required for some of these problems. 
See instructions on page 4.

1. Let function f be continuous and decreasing, with values as shown in the table:

(a) Use the trapezoid method to estimate the area between f and the x-axis on the 
interval 2.5 ≤ x ≤ 5.0.

(b) Find the average rate of change of f on the interval 2.5 ≤ x ≤ 5.0.

(c) Estimate the instantaneous rate of change of f at x = 2.5.

(d) If g(x) = f –1(x), estimate the slope of g at x = 4.

2. The town of East Newton has a water tower whose tank is an ellipsoid, formed by
rotating an ellipse about its minor axis. Since the tank is 20 feet tall and 50 feet 

wide, the equation of the ellipse is .  

(a) If there are 7.48 gallons of water per cubic foot, what is the capacity of this tank
to the nearest thousand gallons?

(b) East Newton imposes water rationing whenever the tank is only one-quarter
full. Write an equation to find the depth of the water in the tank when rationing
becomes necessary? (Do not solve.)

3. Newton’s law of cooling states that the rate at which an object cools is proportional
to the difference in temperature between the object and its surroundings.  

It is 9:00 P.M., time for your milk and cookies. The room temperature is 68°
when you pour yourself a glass of 40° milk and start looking for the cookie jar. 
By 9:03 the milk has warmed to 43°, and the phone rings. It’s your friend, with a
fascinating calculus problem.  Distracted by the conversation, you forget about the
glass of milk.  If you dislike milk warmer than 60°, how long, to the nearest minute,
do you have to solve the calculus problem and still enjoy acceptably cold milk with
your cookies?

x y2 2

625 100
1+ =

END OF PART A, SECTION II

STOP

x 2.5 3.2 3.5 4.0 4.6 5.0

f(x) 7.6 5.7 4.2 3.8 2.2 1.6
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Part B TIME:  45 MINUTES

3 PROBLEMS

No calculator is allowed for any of these problems.
If you finish Part B before time has expired, you may return to work on Part A, but you
may not use a calculator.

4. Consider the first-quadrant region bounded by the curve , the coordinate

axes, and the line x = k, as shown in the figure above.

(a) For what value of k will the area of this region equal π?

(b) What is the average value of the function on the interval 0 ≤ x ≤ k?

(c) What happens to the area of the region as the value of k increases?

y
x

=
+
18

9 2
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5. A bungee jumper has reached a point in her exciting plunge where the taut cord is
100 feet long with a 1/2-inch radius, and stretching. She is still 80 feet above the
ground and is now falling at 40 feet per second. You are observing her jump from 
a spot on the ground 60 feet from the potential point of impact, as shown in the 
diagram above.

(a) Assuming the cord to be a cylinder with volume remaining constant as the cord
stretches, at what rate is its radius changing when the radius is 1/2″?

(b) From your observation point, at what rate is the angle of elevation to the jumper
changing when the radius is 1/2″?
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END OF TEST

STOP

6. The figure above shows the graph of f, whose domain is the closed interval 

[-2,6]. Let .

(a) Find F(–2) and F(6).

(b) For what value(s) of x does F(x) = 0?

(c) For what value(s) of x is F increasing?

(d) Find the maximum value and the minimum value of F.

(e) At what value(s) of x does the graph of F have points of inflection? 
Justify your answer.

F x f t dt
x

( ) = ( )∫1
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Answer Key
A B  P R A C T I C E  E X A M I N A T I O N  2

11. E
12. A
13. E
14. D
15. B
16. D
17. B

18. B
19. B
10. B
11. C
12. A
13. B
14. D

15. B
16. E
17. C
18. B
19. B
20. C
21. B

22. B
23. E
24. E
25. B
26. A
27. E
28. A

29. B
30. C
31. E
32. D
33. D

34. C
35. C
36. D
37. B

38. D
39. E
40. E
41. A

42. D
43. C
44. E
45. B

Part A

Part B
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ANSWERS EXPLAINED

Multiple-Choice

Part A
1. (E) Æ + • as x Æ 2.

2. (A) Divide both numerator and denominator by ; .

3. (E) Since eln u = u, y = 1.

4. (D) f (0) = 3, and f !(x) = (9 " sin 2x)#1/2 . (2 cos 2x), so f !(0) = ; y ! x " 3.

5. (B) dt = 60 arctan t = 60 arctan 1 = 60 · .

6. (D) Here y! = 3 sin2 (1 # 2x) cos (1 # 2x) . (#2).

7. (B) (x2ex–1) = x2ex–1 + 2xex–1.

8. (B) Let s be the distance from the origin: then

s = and = .

Since = 2x and = , = 3x. Substituting yields = .

9. (B) For f(x) = , this limit represents f !(25).

10. (B) V = y2 dx = dx. This definite integral represents the area of 

a quadrant of the circle x2 " y2 = 1, hence V = .

11. (C) = + C.− −1
2

9
1 2

2
1
2( )

/
x

 
− −( ) −( )−1

2 9 22 1 2" x x dx

π
4

1 2
0
1 −∫ x0

1
∫

x

3 5
2

ds
dt

dy
dt

3
2

dx
dt

dx
dt

dy
dt

x dx
dt

y dy
dt

x y

+

+2 2
ds
dtx y2 2+

−





1
2x

d
dx

π
40

160
1 20

1

+∫ t

1
3

1
3

1
2

lim
x

x

x
→ ∞

−

−
= −

1 4

4 3

1
3x

x
x

2

2
2

4
−

−
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12. (A) The integral is rewritten as

dy = dy,

= dy,

= + C.

13. (B) cot x dx = ln sin x = 0 – ln .

14. (D) Note:

15. (B) The winning times are positive, decreasing, and concave upward.

16. (E) G(x) = H(x) + f(t) dt, where f(t)dt represents the area of a trapezoid.

17. (C) f #(x) = 0 for x = 1 and f ##(1) > 0.

18. (B) Solution curves appear to represent odd functions with a horizontal 
asymptote. In the figure above, the curve in (B) of the question has been 
superimposed on the slope field.

0

2
∫0

2
∫

1
2π

π

/

/

6

2

π

π

/

/

6

2

∫

− − +





1
2 2

2
2y

y yln

− − +



∫1

2
2 1y

y

1
2

2 12y y
y

− +∫( )y
dy
−∫ 1 2

0 1 2 3

<----------positive----------><–negative–>
<increasing><--------decreasing--------->
<---------increasing--------><decreasing>
<concave up><------concave down------>

f#{
f#{
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19. (B) Note that

xex = ∞, = ∞, = 0, and ≥ 0 for x ( !1.

20. (C) v is not differentiable at t = 3 or t = 5.

21. (B) Speed is the magnitude of velocity; its graph is shown above.

22. (B) The average rate of change of velocity is .

23. (E) The curve has vertical asymptotes at x = 2 and x = !2 and a horizontal 
asymptote at y = !2.

24. (E) The function is not defined at x = !2; f(x) ≠ f(x). Defining 

f(!2) = 4 will make f continuous at x = −2, but f will still be discontinuous
at x = 1.

25. (B) Since ,

26. (A) .

27. (E) ln (4 " x2) = ln (4 " (!x)2); y# = ; y## = .

28. (A) f(x) = (x sin πx) = πx cos πx " sin πx.d
dx

− −
+

2 4
4

2

2 2

( )
( )

x
x

2
4 2

x
x+

ln (ln ) ln (ln
3

1

3

1

4

1

41 1
4

1
4

x
x

dx x
x

dx x e
e e e

∫ ∫= ( ) = = −− =0 1
4

)

 
f y

x
f- -( )¢ ( ) =

+ ( )¢ ( ) =
◊ +

=1
4

11
5 3

2
1

5 1 3
1
8

and .

f y
f x

−( )′ ( ) =
′

1 1

( )

lim
x→ +1

lim
x→ −1

v v( ) ( )5 0
5 0

2 3
5

−
− = − −

2 3 4 5 61

3

2

1

t

v

x
x

2

3 1+
x

x2 1+
lim
x→−∞

e
x

x

lim
x→∞

lim
x→∞
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Part B

29. (B) See the figure below. A = [3y – y2 – (–y)] dy = (4y – y2) dy.

30. (C) See the figure below. About the x-axis: Washer. ∆V = π(y2 ! 12) ∆x, 

V = π (e2x – 1) dx.

x

y

0

y = e x

(0,1)

(2,0)

(x,1)

∆ x

x

x-axis.

2 – 1)2 ∆ x.

e 2 x – 1) d x.

(x,y)

0

2
∫

y

0
(0,0)

(–4,4)

∆ y
x = –y x = 3y – y2

4y – y2

4

0

A = [3y – y2 – (–y)] dy  =! !

0

4
∫0

4
∫
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31. (E) We solve the differential equation by separation:

ds = 12 dt

= 12t + C

= 6t + C

If s = 1 when t = 0, we have C = 1; hence, = 6t + 1 so = 7 when t = 1.

32. (D)

The roots of f(x) = x2 – 4x – 5 = (x – 5)(x + 1) are x = !1 and 5. Since areas 

A and B are equal, therefore f (x) dx = 0. Thus,

= 

= – 2k2 – 5k – = 0.

Solving on a calculator gives k (or x) equal to 8.

33. (D) If N is the number of bacteria at time t, then N = 200ekt. It is given that 
3= e10k. When t= 24, N= 200e24k. Therefore N= 200(e10k)2.4 = 200(3)2.4 ! 2793
bacteria.

34. (C) Since t = , dt = dx. For x = 2t ! 1, t = 3 yields x = 5 and t = 5 yields 

x = 9.

1
2

x + 1
2

8
3

k3

3

k k k
3

2

3
2 5 1

3
2 5− −



 − − − +( )x x x

k3
2

13
2 5− −



 −

−∫ 1

k

x

y

0

x = k

y = x2 – 4x – 5

B

A

(This figure is not drawn to scale.)

ss

s

2
1
2s

∫s
−∫

1
2

ds
dt

s= 12
1
2
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35. (C) Using implicit differentiation on the equation

x3 + xy – y2 = 10

yields

3x2 + x + y – 2y = 0,

3x2 + y = (y – x) ,

and

= .

The tangent is vertical when is undefined; that is, when 2y ! x = 0. 

Replacing y by in (1) gives

x3 + – = 10

or

4x3 " x2 = 40.

Let y1 = 4x3 " x2 ! 40. Inspection of the equation y1 = f(x) = 0 reveals that
there is a root near x = 2. Solving on a calculator yields x = 2.074.

36. (D) G#(x) = f(3x – 1) · 3.

37. (B) Since f changes from positive to negative at t = 3, G# does also where 
3x ! 1 = 3.

38. (D) Using your calculator, evaluate y#(2).

39. (E) 2(3) " 2(0) " 2(4) " 2(1).

See the figure above.

2 4 6 8

4

3

1

2 f

x2

4
x2

2

x
2

dy
dx

3
2

2x y
y x

+
−

dy
dx

dy
dx

dy
dx

dy
dx
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40. (E) ( f 2(x)) = 2 f (x) f ′(x),

( f 2(x)) = 2[f (x)f ′′(x) + f ′(x) f ′′(x)]

= 2[ f f ′′ + ( f ′)2].

At x = 3, the answer is 2[2(!2) " 52] = 42.

41. (A) The object is at rest when v(t) = ln(2 – t2) = 0; that occurs when 2 – t2 = 1, 

so t = 1. The acceleration is a(t) = v ′(t) = ; a(1) = .

42. (D) = (x2 + 1) . Find x when = 10 .

10 = (x2 + 1)

implies that x = 3.

43. (C) represents the rate of change of the surface area; if y is inversely 

proportional to x, then, y = .

44. (E) The velocity functions are

v1 = !2t sin (t2 " 1)

and

v2 = = .

Graph both functions in [0, 3] # [!5, 5]. The graphs intersect four times 
during the first 3 sec, as shown in the figure above.

45. (B) ! 5.778 lb.
50

100

0 015

100

200
e dtt−∫ .

e t
t

t ( )− 1
2 2

2 2
2 2

t e e
t

t t( )
( )

−

2 31

–5

5

v2

v1

k
x

dS
dt

dx
dt

dx
dt

dx
dt

df
dt

dx
dt

df
dt

−
−
2 1

2 12

( )−
−
2

2 2
t
t

d
dx

2

2

d
dx
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Free-Response

Part A

AB/BC1. (a) T = 

= 10.7.

(b) 

(c) 

(d) To work with g(x) = f –1(x), interchange x and y:

Now 

AB 2. The figure above shows an elliptical cross section of the tank. Its equation is

(a) The volume of the tank, using disks, is V = 2π , where the ellipse’s

symmetry about the x-axis has been exploited. The equation of the ellipse

is equivalent to x2 = 6.25(100 ! y2), so

Use the calculator to evaluate this integral, storing the answer as V to have
it available for part (b).

The capacity of the tank is 7.48V, or 196,000 gal of water, rounded to the
nearest 1000 gal.

V y dy= −( )∫12 5 100 2

0

10

. .π

x dy2

0

10

∫

x y2 2

625 100
1+ = .

x

y

0

–10

10

25

k

(x,y)

′( ) ≈ −
−

= −g 4
4 0 3 5
3 8 4 2

1 25
. .
. .

. .

′ ( ) ≈ −
− = −f 2 5 5 7 7 6

3 2 2 5
2 714. . .

. .
. .

∆
∆

y
x

= −
−

= −7 6 1 6
2 5 5 0

2 4
. .
. .

. .

3 8 2 2
2

0 6
2 2 1 6

2
0 4

. .
( . )

. .
( . )

+



 + +





7 6 5 7
2

0 7
5 7 4 2

2
0 3

4 2 3 8. .
( . )

. .
( . )

. .+



 + +



 + +

22
0 5



 +( . )

x 7.6 5.7 4.2 3.8 2.2 1.6

g(x) 2.5 3.2 3.5 4.0 4.5 5.0
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AB

(b) Let k be the y-coordinate of the water level when the tank is one-fourth full.
Then

and the depth of the water is k + 10.

AB 3. Let M = the temperature of the milk at time t. Then

The differential equation is separable:

where c = e-C.
Find c, using the fact that M = 40° when t = 0:

Find k, using the fact that M = 43° when t = 3:

Hence 

Now find t when M = 60°:

Since the phone rang at t = 3, you have 30 min to solve the problem.

60 68 28

8
28

33 163

1
3

25
28

1
3

25
28

8
28

1
3

25
28

= −

=

= =

e

e

t

t

t

ln

ln

,

,

ln
ln

. .

M e
t

= −68 28
1
3

25
28

ln
.

 

43 68 28

25
28

1
3

25
28

3

3

= -

=

= -

-

-

e

e

k

k

k

,

,

ln .

40 68 280= − =ce cmeans .

dM
M

k dt

M kt C M

M kt C

M e

M ce

kt C

kt

68
68 0

68

68

68

−
=

− − = + − >( )
−( ) = − +( )

− =
= −

∫ ∫

− +( )

−

,

ln ,

ln ,

,

,

note that 68

dM
dt

k M= −( )68 .

6 25 100
4

2

10
. π −( ) =

−∫ y dy
Vk
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Part B
AB 4. (a) 

See the figure on page 550.

(b) The average value of a function on an interval is the area under the graph of 
the function divided by the interval width, here .

(c) From part (a) you know that the area of the region is given by 

.  Since , as k

increases the area of the region approaches 3U.

AB/BC 5. (a) The volume of the cord is V = pr2h. Differentiate with respect to time, then
substitute known values. (Be sure to use consistent units; here, all measure-
ments have been converted to inches.)

(b) Let q represent the angle of elevation and 
h the height, as shown. 

When h = 80, your distance to the jumper 
is 100 ft, as shown.

Then

100
60

1
60

40

6
25

2( ) = −( )

= −

d
dt
d
dt

θ

θ

,

.rad sec

  

tan

sec

q

q q

=

=

h

d
dt

dh
dt

60
1

60
2

dV
dt

r dh
dt

rh dr
dt

= +( )
= ( ) ⋅ + ⋅ ⋅

π

π

2

1
2

2 1
2

2

0 480 2 12

,

000

1
10

dr
dt

dr
dt

( )
= −

,

.in sec

lim
k

k
→∞

= 



 = 6 arctan 

3
6

2
3

π π18
9

6
320 +

=∫ x
dx

kk

 arctan

π
3

  

18
9

3
18
9 1

6
3

6
3

6
0
3

3 6

3

20

1
3

3
2

0

0

+
=

◊
+ ( ) =

=

- =

=

=

Ú
Ú

x
dx

dx

x

k

k

k

k

x

k

k

p

p

p

p

p

,

,

,

,

tan ,

,

 arctan 

 arctan  arctan 

60'

80'

100'

q

100' h
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AB/BC 6. (a) the negative of the area of the shaded 

rectangle in the figure. Hence F(-2) = - (3)(2) = -6.

is represented by the shaded triangles in the figure.

(b) , so F(x) = 0 at x = 1. because the regions above 

and below the x-axis have the same area. Hence F(x) = 0 at x = 3.

(c) F is increasing where F ¢ = f is positive: -2 f x < 2.

(d) The maximum value of F occurs at x = 2, where F ¢ = f changes from positive 

to negative. .

The minimum value of F must occur at one of the endpoints. Since 
F(-2) = - 6 and F(6) = -3, the minimum is at x = -2.

(e) F has points of inflection where F¢¢ changes sign, as occurs where F¢ = f
goes from decreasing to increasing, at x = 3.

F f t dt2 1 2 1
1

2
1
2( ) = ( ) = ( )( ) =∫

f

x

1 2

63

2

f t dt( ) =∫1

3

0f t dt( ) =∫1

1

0

f

x

1 2 6

2

f t dt f t dt f t dt( ) = ( ) + ( )
= ( )( ) − ( )( ) = −

∫ ∫ ∫1

6

1

2

2

6

1
2

1
21 2 4 2 3.

F f t dt6
1

6

( ) = ( )∫

x

f

–2 1 2

2

F f t dt f t dt−( ) = ( ) = − ( ) =
−

−∫ ∫2
1

2

2

1
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1   A     B     C     D     E  A     B     C     D     E

2   A     B     C     D     E  A     B     C     D     E

3   A     B     C     D     E  A     B     C     D     E

4   A     B     C     D     E  A     B     C     D     E

5   A     B     C     D     E  A     B     C     D     E

6   A     B     C     D     E  A     B     C     D     E

7   A     B     C     D     E  A     B     C     D     E

8   A     B     C     D     E  A     B     C     D     E

9   A     B     C     D     E  A     B     C     D     E

10   A     B     C     D     E  A     B     C     D     E

11   A     B     C     D     E  A     B     C     D     E

12   A     B     C     D     E  A     B     C     D     E

13   A     B     C     D     E  A     B     C     D     E

14   A     B     C     D     E  A     B     C     D     E

15   A     B     C     D     E  A     B     C     D     E

16   A     B     C     D     E  A     B     C     D     E

17   A     B     C     D     E  A     B     C     D     E

18   A     B     C     D     E  A     B     C     D     E

19   A     B     C     D     E  A     B     C     D     E

20   A     B     C     D     E  A     B     C     D     E

21   A     B     C     D     E  A     B     C     D     E

22   A     B     C     D     E  A     B     C     D     E

23   A     B     C     D     E  A     B     C     D     E

24   A     B     C     D     E  A     B     C     D     E

25   A     B     C     D     E  A     B     C     D     E

26   A     B     C     D     E  A     B     C     D     E

27   A     B     C     D     E  A     B     C     D     E

28   A     B     C     D     E  A     B     C     D     E

29   A     B     C     D     E  A     B     C     D     E

30   A     B     C     D     E  A     B     C     D     E

31   A     B     C     D     E  A     B     C     D     E

32   A     B     C     D     E  A     B     C     D     E

33   A     B     C     D     E  A     B     C     D     E

34   A     B     C     D     E  A     B     C     D     E

35   A     B     C     D     E  A     B     C     D     E

36   A     B     C     D     E  A     B     C     D     E

37   A     B     C     D     E  A     B     C     D     E

38   A     B     C     D     E  A     B     C     D     E

39   A     B     C     D     E  A     B     C     D     E

40   A     B     C     D     E  A     B     C     D     E

41   A     B     C     D     E  A     B     C     D     E

42   A     B     C     D     E  A     B     C     D     E

43   A     B     C     D     E  A     B     C     D     E

44   A     B     C     D     E  A     B     C     D     E

45   A     B     C     D     E  A     B     C     D     E

Answer Sheet
A B  P R A C T I C E  E X A M I N A T I O N  3

Part A

29   A     B     C     D     E  A     B     C     D     E

30   A     B     C     D     E  A     B     C     D     E

31   A     B     C     D     E  A     B     C     D     E

32   A     B     C     D     E  A     B     C     D     E

33   A     B     C     D     E  A     B     C     D     E

34   A     B     C     D     E  A     B     C     D     E

35   A     B     C     D     E  A     B     C     D     E

36   A     B     C     D     E  A     B     C     D     E

37   A     B     C     D     E  A     B     C     D     E

38   A     B     C     D     E  A     B     C     D     E

39   A     B     C     D     E  A     B     C     D     E

40   A     B     C     D     E  A     B     C     D     E

41   A     B     C     D     E  A     B     C     D     E

42   A     B     C     D     E  A     B     C     D     E

43   A     B     C     D     E  A     B     C     D     E

44   A     B     C     D     E  A     B     C     D     E

45   A     B     C     D     E  A     B     C     D     E

Part B

!
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11. (where [x] is the greatest integer in x) is

(A) 1 (B) 2 (C) 3 (D) ! (E) nonexistent

2. is

(A) 1 (B) "1 (C) 0 (D) ! (E) none of these

3. If f(x) = x ln x, then f ′′′(e) equals

(A) (B) 0 (C) – (D) (E)

4. The equation of the tangent to the curve 2x2 " y4 = 1 at the point ("1, 1) is
(A) y = "x
(B) y = 2 " x
(C) 4y # 5x # 1 = 0
(D) x " 2y # 3 = 0
(E) x " 4y # 5 = 0

5. On which interval(s) does the function f(x) = x4 – 4x3 + 4x2 + 6 increase?

(A) x $ 0 and 1 $ x $ 2 (B) x % 2 only (C) 0 $ x $ 1 and x % 2
(D) 0 $ x $ 1 only (E) 1 $ x $ 2 only

2
3e

1
2e

1
2e

1
e

lim
sin

h

h

h→

+



 −

0

2
1

π

 
lim x
x

[ ]
Æ2

567

AB Practice Examination 3

The use of calculators is not permitted for this part of the examination.
There are 28 questions in Part A, for which 55 minutes are allowed. To compensate
for possible guessing, the grade on this part is determined by subtracting one-fourth
of the number of wrong answers from the number answered correctly.

Directions: Choose the best answer for each question.

SECTION I 

Part A TIME:  55 MINUTES
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3
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6. equals

(A) (B)

(C) (D)

(E)

7. A relative maximum value of the function is

(A) 1 (B) e (C) (D) (E) none of these

8. If a particle moves on a line according to the law s = t5 # 2t3, then the number of
times it reverses direction is

(A) 4 (B) 3 (C) 2 (D) 1 (E) 0

9. A particular solution of the differential equation whose slope field is shown above
contains point P. This solution may also contain which other point?

(A) & (B) B (C) C (D) D (E) E

10. Let Which of the following statements is (are) true?

I. The domain of F is x π '1.
II. F(2) > 0.

III. The graph of F is concave upward.

(A) none (B) I only (C) II only
(D) III only (E) II and III only

11. As the tides change, the water level in a bay varies sinusoidally. At high tide today at
8 A.M., the water level was 15 feet; at low tide, 6 hours later at 2 P.M., it was 3 feet.
How fast, in feet per hour, was the water level dropping at noon today?

(A) 3 (B) (C) (D) (E) 6 3π 33 3
π 3

2

  
F x

dt
t

x

( ) =
-!

5
21

.

1
e

2
e

y
x

x
= ln

 
1
4

1
2

2sin cscx x C- +

2 4 2ln sin+ +x Cln sin4 2+ +x C

-
+

+1
2 4( sin )x

C4 2+ +sin x C

cos
sin
x

x
dx

4 2+Ú
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12. A smooth curve with equation y = f (x) is such that its slope at each x equals x2. If the
curve goes through the point (!1, 2), then its equation is

(A) (B) x3 ! 3y " 7 = 0

(C) y = x3 " 3 (D) y ! 3x3 ! 5 = 0 (E) none of these

13. du is equal to

(A) ln(1 " e2u) " C (B) ln|1 + eu | + C (C) tan–1eu + C

(D) tan–1eu + C (E) tan–1e2u + C

14. Given f (x) = log10x and log10(102) ! 2.0086, which is closest to f ′(100)?

(A) 0.0043 (B) 0.0086 (C) 0.01 (D) 1.0043 (E) 2

15. If G(2) = 5 and , then an estimate of G(2.2) using a tangent-line

approximation is 

(A) 5.4 (B) 5.5 (C) 5.8 (D) 8.8 (E) 13.8

16. The area bounded by the parabola y = x2 and the lines y = 1 and y = 9 equals

(A) 8 (B) (C) (D) 32 (E)

17. Suppose if x π 0 and f(0) = 1. Which of the following statements is 

(are) true of f?

III. f is defined at x = 0.
III. f (x) exists.

III. f is continuous at x = 0.

(A) I only (B) II only (C) I and II only
(D) None of the statements is true. (E) All are true.

 
lim
xÆ 0

f x
x x

x
( ) = +2

104
3

64
3

2
84
3

′( ) =
−

G x
x
x

10
9 2

1
2

1
2

1
2

 
" e

e

u

u1 2+

 
y

x= +
3

3
7
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18. Which function could have the graph shown below?

(A) (B) (C)

(D) (E)

19. Suppose the graph of f is both increasing and concave up on a ( x ( b. Then, using
the same number of subdivisions, and with L, R, M, and T denoting, respectively, left,
right, midpoint, and trapezoid sums, it follows that

(A) R ( T ( M ( L (B) L ( T ( M ( R (C) R ( M ( T ( L
(D) L ( M ( T ( R (E) none of these

20. is

(A) # ! (B) 0 (C) (D) "! (E) nonexistent

21. The only function that does not satisfy the Mean Value Theorem on the interval 
specified is

(A) on ["3, 1]

(B) on [1, 3]

(C) on ["1, 2]

(D) on ["1, 1]

(E)
 
f x x( ) = È

ÎÍ
˘
˚̇

2 3 1
2

3
2

 on ,

f x x
x

( ) = + 1

f x
x x

x( ) = − +
3 2

3 2

f x
x

( ) = 1

f x x x( ) = −2 2

1
6

lim
x

x
xÆ

+
-3 2

3
9

y
x

x
=

+
4

1
y

x
x

= +
+

2

2

3
1

y
x

x
=

-
2

12y
x

x
=

+
4

12y
x

x
=

+2 1

x

y

0

3

2

1

1 2 3 4

y = f(x)
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22. Suppose f )(x) = x(x – 2)2(x + 3). Which of the following is (are) true?

III. f has a local maximum at x = "3.
III. f has a local minimum at x = 0.
III. f has neither a local maximum nor a local minimum at x = 2.

(A) I only (B) II only (C) III only
(D) I and II only (E) I, II, and III

23. If , then is

(A) (B) (C)

(D) (E)

24. The graph of function f shown above consists of three quarter-circles.

Which of the following is (are) equivalent to ?

II.

III.

IIII.

(A) I only (B) II only (C) III only
(D) I and II only (E) I, II, and III

25. The base of a solid is the first-quadrant region bounded by , and each
cross section perpendicular to the x-axis is a semicircle with a diameter in the 
xy-plane. The volume of the solid is

(A) (B) (C)

(D) (E)
 
π
8

4
0

4 4 24! −( )y dyπ
4

4
0

2 4 2! −( )y dy

π
8

4 2
2

2!−
− x dxπ

8
4 2

0

2! − x dxπ
2

4 2
0

2! − x dx

 y x= -4 24

 
1
2 0

4! f x dx( )

  !4

2

f x dx( )

  
1
2 2

2!-
( )f x dx

  !0

2

f x dx( )

1 2–2 –1

43

–1

–2

2

1

x

f

 

1
1

2

2

-
+
x

x x( )

1

12x x +

2 1
1

2

2

x
x x

+
+( )

1
12x x( )+

1
12x +

dy
dx

y
x

x
=

+
ln

2 1
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26. The average value of on the interval ["2, 4] is

(A) (B) (C) (D) (E) 6

27. is

(A) (B) (C) 1 (D) 3 (E) nonexistent

28. The area of the region in the xy-plane bounded by the curves y = ex, y = e"x, and x = 1
is equal to

(A) (B) (C)

(D) 2e " 2 (E) none of the these
 
e

e
+ 1

e
e

- 1
e

e
+ -1

2

1
2

- 1
2

lim
x

x x
xÆ•

+ -
+

3 2
4 9

2

2

5
1
3

4
2
3

3
1
3

2
2
3

f x x( ) = +3

END OF PART A, SECTION I

STOP
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29. . Then 

(A) (B) (C)

(D) (E)

30. A cylindrical tank, shown in the figure above, is partially full of water at time t = 0,
when more water begins flowing in at a constant rate. The tank becomes half full
when t = 4, and is completely full when t = 12. Let h represent the height of the water 

at time t. During which interval is increasing?

(A) none (B) 0 < t < 4 (C) 0 < t < 8 (D) 0 < t < 12
(E) 4 < t < 12

31. A particle moves on a line according to the law s = f(t) so that its velocity v = ks,
where k is a nonzero constant. Its acceleration is

(A) k2v (B) k2s (C) k (D) 0 (E) none of these

32. A cup of coffee placed on a table cools at a rate of °F per minute,

where H represents the temperature of the coffee and t is time in minutes. If the 
coffee was at 120∞F initially, what will its temperature be 10 minutes later?

(A) 73∞F (B) 95∞F (C) 100∞F (D) 118∞F (E) 143∞F

dH
dt

H= − −( )0 05 70.

dh
dt

hours
t =12

t = 4 h

t = 0

 [ cos( )]1 2 22+ + ◊x x1 22+ +cos( )x

( ) sinx x2 2 1+ -2 1x x- sin2 1 22x x+ +cos( )

¢ =f x( )
 
f x t dt

x

( ) cos= +
+

Ú 1
0

22

Some questions in this part of the examination require the use of a graphing 
calculator. There are 17 questions in Part B, for which 50 minutes are allowed. 
The deduction for incorrect answers on this part is the same as that for Part A. 

Directions: Choose the best answer for each question. If the exact numerical value 
of the correct answer is not listed as a choice, select the choice that is closest to the 
exact numerical answer.

Part B TIME:  50 MINUTES
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33. An investment of $4000 grows at the rate of 320e0.08t dollars per year after t years. 
Its value after 10 years is approximately

(A) $4902 (B) $8902 (C) $7122
(D) $12,902 (E) none of these

34. If then the domain of f "1(x) is

(A) ("!,!) (B) (0,!) (C) (1,!)
(D) {xÙx * 1} (E) {xÙx * 2}

Questions 35 and 36. The graph shows the velocity of an object during the interval 
0 ≤ t ≤ 9.

35. The object attains its greatest speed at t = 

(A) 2 (B) 3 (C) 5 (D) 6 (E) 8 

36. The object was at the origin at t = 3. It returned to the origin

(A) at t = 5 (B) at t = 6 (C) during 6 < t < 7 
(D) at t = 7 (E) during 7 < t < 8 

37. When the region bounded by the y-axis, y = ex, and y = 2 is rotated around the y-axis
it forms a solid with volume 

(A) 0.039 (B) 0.386 (C) 0.592 (D) 1.214 (E) 4.712

38. If is replaced by u, then is equivalent to

(A) (B) (C)

(D) (E)
  
1
2 21

2 2

2! u
u

du
+  !3

6

2 2
u du

u +

  !3

6 2

2

2
2

u
u

du
+  

2
21

2 2

2! u du
u +  !1

2

2 2
u du

u +

  !3

6 2x
x

dx
-

x − 2

 f x ex( ) ( )= +1
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39. The line tangent to the graph of function f at the point (8,1) intersects the y-axis 
at y = 3. Find f ′(8).

(A) – (B) 0 (C) (D) 1 (E) 3

40. How many points of inflection does the function f have on the interval 0 ( x ( 6 
if ?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

41. The graph shows the rate at which tickets were sold at a movie theater during the last
hour before showtime. Using the right-rectangle method, estimate the size of the 
audience.

(A) 230 (B) 300 (C) 330 (D) 375 (E) 420

42. At what point of intersection of f(x) = 4sin x and g(x) = ln (x2) do their derivatives have
the same sign?

(A) "5.2 (B) "4.0 (C) "1.2 (D) 2.6 (E) 7.8

43. Which statement is true?

(A) If f (x) is continuous at x = c, then f ′(c) exists.
(B) If f ′(c) = 0, then f has a local maximum or minimum at (c, f (c)).
(C) If f ′′(c) = 0, then the graph of f has an inflection point at (c, f (c)).
(D) If f is differentiable at x = c, then f is continuous at x = c.
(E) If f is continuous on (a, b), then f attains a maximum value on (a, b).

6:15 6:30 6:45 7:00

4

6

8

10

2

  time:
P.M.

nu
m

be
r o

f t
ic

ke
ts

 s
ol

d 
pe

r m
in

ut
e

b

 ¢¢ = -f x x x( ) cos2 3 3

1
8

1
4
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44. The graph of f) is shown above. Which statements about f must be true for a < x < b?

I. f is increasing.
II. f is continuous.

III. f is differentiable.

(A) I only (B) II only (C) I and II only
(D) I and III only (E) I, II, and III

45. After a bomb explodes, pieces can be found scattered around the center of the 
blast. The density of bomb fragments lying x meters from ground zero is given by 

N(x) = fragments per square meter. How many fragments will be found 

within 20 meters of the point where the bomb exploded?

(A) 13 (B) 278 (C) 556 (D) 712 (E) 4383

2
1 3 2

x
x+

a b

f ¢

END OF SECTION I

STOP
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SECTION II 

Part A TIME:  45 MINUTES

3 PROBLEMS

A graphing calculator is required for some of these problems. 
See instructions on page 4.

1. Let R represent the region bounded by y = sin x and y = x4. Find:

(a) the area of R;

(b) the volume of the solid whose base is R, if all cross sections perpendicular to the 
x-axis are isosceles triangles with height 3;

(c) the volume of the solid formed when R is rotated around the x-axis.

2. A curve is defined by x2y – 3y2 = 48.

(a) Verify that .

(b) Write an equation of the linearization of this curve at (5,3).

(c) Using your equation from part (a), estimate the y-coordinate of the point on the
curve where x = 4.93.

(d) Show that this curve has no horizontal tangent lines.

3. The table shows the depth of water, W, in a river, as measured at 4-hour intervals 
during a day-long flood. Assume that W is a differentiable function of time t.

(a) Find the approximate value of W ¢(16). Indicate units of measure.

(b) Estimate the average depth of the water, in feet, over the time interval 0 f t f 24
hours by using a trapezoidal approximation with subintervals of length Dt = 4 days.

(c) Scientists studying the flooding believe they can model the depth of the water with 

the function where F(t) represents the depth of the water, 

in feet, after t hours. Find F¢(16) and explain the meaning of your answer, with 
appropriate units, in terms of the river depth.

(d) Use the function F to find the average depth of the water, in feet, over the time 
interval 0 f t f 24 hours.

F t
t( ) = − +



35 3

3
4

cos ,

t (hr) 0 4 8 12 16 20 24

W(t) (ft) 32 36 38 37 35 33 32

 

dy
dx

xy
y x

=
-

2
6 2

END OF PART A, SECTION II

STOP
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Part B TIME:  45 MINUTES

3 PROBLEMS

No calculator is allowed for any of these problems.
If you finish Part B before time has expired, you may return to work on Part A, but you
may not use a calculator.

4. Two autos, P and Q, start from the same point and race along a straight road for 
10 seconds. The velocity of P is given by feet per second. 
The velocity of Q is shown in the graph.

(a) At what time is P’s actual acceleration (in ft/sec2) equal to its average acceleration
for the entire race?

(b) What is Q’s acceleration (in ft/sec2) then?

(c) At the end of the race, which auto was ahead? Explain.

5. Given the differential equation 

(a) Sketch the slope field for this differential equation at the points shown in the figure.

(b) Let f be the particular solution to the differential equation whose graph passes
through (0,1). Express f as a function of x and state its domain.

(–1,1)

(–1,0)

(–1,–1)

(0,1)

(0,0)

(0,–1)

(1,1)

(1,0)

(1,–1)

y

x

dy
dx

x y= +( )2 12

80

60

40

20

(0,0)
5

(5,20)

10
t (sec)

 v
 (f

t/s
ec

)

(10,80)

v t tp ( ) = + −( )6 1 8 1
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END OF TEST

STOP

6. The graph shown is for .

(a) What is ?

(b) What is ?

(c) At what value of x does f(x) = 0?

(d) Over what interval is f !(x) negative?

(e) Let . Sketch the graph of G on the same axes.
 
G x f t dt

x

( ) ( )= Ú2

f t dt( )
2

7

Ú

f t dt( )
0

2

Ú

F

x

y

8

6

4

2

2 4 6 8

F x f t dt
x

( ) ( )= Ú0
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Answer Key
A B  P R A C T I C E  E X A M I N A T I O N  3

11. E
12. C
13. C
14. A
15. C
16. C
17. D

18. E
19. E
10. E
11. B
12. B
13. D
14. A

15. C
16. E
17. E
18. B
19. D
20. E
21. D

22. E
23. B
24. D
25. B
26. C
27. A
28. A

29. A
30. E
31. B
32. C
33. B

34. C
35. E
36. E
37. C

38. B
39. A
40. A
41. C

42. B
43. D
44. E
45. D

Part A

Part B

7_3679_APCalc_25ABExam3  10/3/08  4:35 PM  Page 580



AB Practice Examination 3 581

AB
 P

ra
ct

ic
e 

Ex
am

in
at

io
n 

3

ANSWERS EXPLAINED

Multiple-Choice

Part A
1. (E) Here, 1, while .

2. (C) The given limit equals , where .

3. (C) Since f (x) = x ln x, 

f )(x) = 1 + ln x, f ))(x) = , and f )))(x) = " .

4. (A) Differentiate implicitly to get . Substitute ("1, 1) to find

= –1, the slope at this point, and write the equation of the tangent: 

y " 1 = "1(x # 1).

5. (C) f )(x) = 4x3 " 12x2 # 8x = 4x(x " 1)(x " 2). To determine the signs of 
f )(x), inspect the sign at any point in each of the intervals x $ 0, 0 $ x $ 1, 
1 $ x $ 2, and x % 2. The function increases whenever .

6. (C) The integral is equivalent to = , where u = 4 # 2sin x.

7. (D) Here , which is zero for x = e. Since the sign of y′ changes from

positive to negative as x increases through e, this critical value yields a 

relative maximum. Note that .

8. (E) Since = t2(5t2 + 6) is always positive, there are no reversals

in motion along the line.
 
v

ds
dt

t t= = +5 64 2

f e
e

( ) = 1

¢ = -
y

x
x

1
2

ln

1
2

du
uÚ1

2
2
4 2

cos
sin
x dx

x+∫

¢ >f x( ) 0

dy
dx

4 4 03x y
dy
dx

- =

1
2x

1
x

f x x( ) sin=
 

¢ÊË
ˆ
¯f

p
2

 
lim [ ]
x

x
Æ + =

2
2lim [ ]

x
x

Æ -
=

2
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9. (E) The slope field suggests the curve shown above as a particular solution.

10. (E) Since , f is discontinuous at x = 1; the domain of F is 

therefore x % 1. On [2, 5] f (x) $ 0, so . , 
which is positive for x % 1.

11. (B) In the graph above, W(t), the water level at time t, is a cosine function with
amplitude 6 ft and period 12hr:

Hence, W ′(4) = –π sin = – ft/hr.π 3
2

2
3
π





  
¢ = - Ê

Ë
ˆ
¯W t t( ) sin .p p

6
ft hr

 
W t t( ) cos= Ê

Ë
ˆ
¯ +6

6
9

p
ft,

3

15

2 4 6 8

W (t)

hr

ft

¢¢ = ¢ =
-

F x f x
x
x

( ) ( )
( )

2
1 2 2

f >Ú 0
5

2

f x F x
x

( ) ( )= ¢ =
-
1

1 2
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12. (B) Solve the differential equation , getting . Use x = "1, 

y = 2 to determine C = .

13. (D)

14. (A)

15. (C) G)(2) = 4, so G (x) " 4(x " 2) # 5.

16. (E) See the figure below.

17. (E) Note that .

18. (B) Note that (0, 0) is on the graph, as are (1, 2) and ("1, "2). So only (B) and
(E) are possible. Since , only (B) is correct.

19. (D) See the figure.

T

M

L

R

 
lim lim
x x

y y
Æ• Æ-•

= = 0

lim
x

f x f
Æ

( ) = ( ) =
0

0 1

x

y

0

2x

(0,1)

(0,9)

∆ y (x k , y)

1

9

A = 2

1

9

x d y = 2 y dy = 104
3

.! !

A x dy y dy= = =Ú Ú2 2
104

31

9

1

9

.

 
¢ -

-
= -

f
f f

( )
( ) ( ) .

.100
102 100
102 100

2 0086 2
2

"

e du

e
e C

u

u
u

1 2
1

+
= +∫ −

( )
tan ( )

7
3

 
y

x
C= +

3

3

dy
dx

x= 2
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20. (E)

21. (D) In (D), f (x) is not defined at x = 0. Verify that each of the other functions 
satisfies both conditions of the Mean Value Theorem.

22. (E) The signs within the intervals bounded by the critical points are given below.

Since f changes from increasing to decreasing at x = –3, f has a local 
maximum at !3. Also, f has a local minimum at x = 0, because it is 
decreasing to the left of zero and increasing to the right.

23. (B) Since ln = ln x – ln (x2 + 1), then

.

24. (D)

25. (B) As seen from the figure, , where y = 2r,

25. B.

2

2

x

y

y =  4 4 – 2x

 
V

y
dx x dx= Ê

Ë
ˆ
¯ = -ÚÚp p

2 2 8
4 2

2

0

2

0

2

.

D DV r x= 1
2

2p

 
f f f f

-Ú Ú Ú Ú= = - =
2

0

0

2

2

4

0

4

0, but .

dy
dx x

x

x x x
= − ⋅

+
=

+
1 1

2
2

1

1

12 2( )

1
2

x

x2 1+

x
x

x
x x x x xx x

+
-

= +
+ -

=
- -

= +•
-

= -•
Æ Æ+ -

3
9

3
3 3

1
3

1
3

1
32 3 3( )( )

; lim ; lim .

" ! " "

!3 0 2

signs of f #
x
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26. (C) From the figure below, 

27. (A) Since the degrees of numerator and denominator are the same, the limit as

xÆ! is the ratio of the coefficients of the terms of highest degree: .

28. (A) We see from the figure that ∆A = (y2 – y1)∆x; 

A = (ex – e–x) dx

= (ex + e–x) = e + – 2.

28. A.

x

y

0

A

(x, y2 )

(x, y1)

y2 = e x

y1 = e – x

1

∆ A

 

1
e0

1

0

1
∫

 
-2
4

–2 0 4

5

7

x

f (x)

33

3

f
-Ú =

+ + +

=
∑ ∑

2

4

6

5 3
2

2
3 7

2
4

6
28
6

.
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Part B
29. (A) Let u = x2 # 2. Then

and

30. (E) will increase above the half-full level (that is, the height of the water 

will rise more rapidly) as the area of the cross section diminishes.

31. (B) Since v = ks = , then a = = k = kv = k2s.

32. (C)

32. C.

32. C.

The initial condition H(0) = 120 shows c = 50. Evaluate H(10).

33. (B) Let P be the amount after t years. It is given that = 320 e0.08t. The 

solution of this differential equation is P = 4000e0.08t # C, where 
P(0) = 4000 yields C = 0. The answer is 4000e(0.08) . 10.

34. (C) The inverse of y = 1 # ex is x = 1 # ey or y = ln (x " 1); (x " 1) must be 
positive.

35. (E) Speed is the magnitude of velocity: Ùv(8)Ù = 4.

36. (E) For 3 $ t $ 6 the object travels to the right (3)(2) = 3 units. At t = 7 it has 

returned 1 unit to the left; by t = 8, 4 units to the left.

1
2

dP
dt

 H x ce t( ) .= + -70 0 05

H ce t- = -70 0 05.

dH
H

dt H t C
-

= - - = - +
70

0 05 70 0 05. . ln .

ds
dt

d s

dt

2

2
ds
dt

dh
dt

d
dx

t dt u
du
dx

x x
u

1 1 1 2 2
0

2+ = + = + +Ú ∑cos cos cos( ) ( ).

d
du

t dt u
u

1 1
0

+ = +Ú cos cos
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37. (C) Use disks: ∆V = πr2∆y = πx2∆y, where x = ln y. Use your calculator to 

evaluate V = π (ln y)2 dy.

38. (B) If , then u2 = x " 2, x = u2 # 2, dx = 2u du. When x = 3, u = 1;
when x = 6, u = 2.

39. (A) The tangent line passes through points (8,1) and (0,3). Its slope, ,

is f ′(8).

40. (A) Graph f ′′ in [0,6] + [–5,10]. The sign of f ′′ changes only at x = a, as seen
in the figure.

10

–5

6.0

a

1

1 3
8 0

−
−

 u x= - 2

1

2
∫
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41. (C) In the graph below, the first rectangle shows 2 tickets sold per minute for 
15 min, or 30 tickets. Similarly, the total is 2(15) # 6(15) # 10(15) # 4(15).

42. (B) Graph both functions in [–8,8] + [–5,5]. At point of intersection Q, both are
decreasing. Tracing reveals x " "4 at Q. If you zoom in on the curves at 
x = T, you will note that they do not actually intersect there.

43. (D) Counterexamples are, respectively, for (A), f(x) = |x|, c = 0; for (B),
f(x) = x3, c = 0; for (C), f(x) = x4, c = 0; for (E), f(x) = x2 on ("1, 1).

44. (E) f )(x) > 0; the curve shows that f ) is defined for all a $ x $ b, so f is 
differentiable and therefore continuous.

45. (D) Consider the blast area as a set of concentric rings; one is shown in the figure.
The area of this ring, which represents the region x meters from the center of
the blast, may be approximated by the area of the rectangle shown. Since the
number of particles in the ring is the area times the density, ,P = 2πx . ,x .
N(x). To find the total number of fragments within 20 m of the point of the 

explosion, integrate: 2π

2 π x

∆ x

x

  
x

x
x

dx
0

20

3 2

2
1

711 575Ú +
" . .

P

Q

R

S

T

g

f
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Free-Response

Part A
AB/BC1. Draw a vertical element of area as shown below.

(a) Let a represent the x-value of the positive point of intersection of y = x4 and
y = sinx. Solving a4 = sina with the calculator, we find a = 0.9496.

" 0.264.

(b) Elements of volume are triangular prisms with height h = 3 and base 
b = (sinx – x 4), as shown below.

 
V x x dx

a

= - =Ú3
2

0 3954

0
(sin ) . .

D DV x x x= -1
2

34(sin )( ) ,

y

x

a

b

3

 
A x x dx

a

= -Ú (sin )4

0

D D DA y y x x x x= - = -( ) (sin ) ,top bottom
4

y

y = sin x

y = x4

R

x
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(c) When R is rotated around the x-axis, the element generates washers. If r1
and r2 are the radii of the larger and smaller disks, respectively, then

AB2. (a) Since x2y – 3y2 = 48,

(b) At (5,3), , so the equation of the tangent line is 

(c)

(d) Horizontal tangent lines have . This could happen only if 

2xy = 0, which means that x = 0 or y = 0.
If x = 0, 0y – 3y2 = 48, which has no real solutions.
If y = 0, x2 • 0 – 3 • 02 = 48, which is impossible. Therefore, there are no 
horizontal tangents.

AB/BC3. (a)

(b) The average value of a function is the integral across the given interval 

divided by the interval width. Here . Estimate the 

value of the integral using trapezoid rule T with values from the table and
Dt = 4:

Hence 

 
Avg ft( ) . .W ª =844

24
35 167

T
t

W W W W W W W= + + + + + +( )

= + ¥ + ¥ + ¥ + ¥ + ¥ +

=

D
2

0 2 4 2 8 2 12 2 16 2 20 24

4
2

32 2 36 2 38 2 37 2 35 2 33 32

844

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

.

 
Avg( )

( )
W

W t dt
=

-
Ú0

24

24 0

¢ ª -
-

= - = -W
W W

( )
( ) ( )

16
20 16
20 16

33 35
4

1
2

ft hr.

dy
dx

xy
y x

=
-

=2
6

02

y y- = - - = =3
30
7

4 93 5 0 3 3 3( . ) . , . .so

y x- = - -3
30
7

5( ).

dy
dx

=
-

= -2 5 3
6 3 5

30
72

• •

•

x
dy
dx

xy y
dy
dx

x y
dy
dx

xy

dy
dx

xy
y x

2

2

2

2 6 0

6 2

2
6

+ - =

- = -

=
-

,

( ) ,

.

V x x dx
a

= - =Úp (sin ) . .2 8

0
0 529

 D D DV r r x x x x= - = -( )p p( ) (sin ) ( ) ,1
2

2
2 2 4 2
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(c) For , use your calculator to evaluate 

F¢(16) ª –0.749. After 16 hr, the river depth is dropping at the rate of 
0.749 ft/hr.

(d)

Part B
AB/BC 4. (a) , so v(0) = 0 and v(10) = 48.

The average acceleration is 

Acceleration 

(b) Since Q’s acceleration, for all t in 0 f t f 5, is the slope of its velocity 

graph, 4 ft/sec2.

(c) Find the distance each auto has traveled. For P, the distance is 

For auto Q, the distance is the total area of the triangle and trapezoid under
the velocity graph shown below, namely,

 
1
2

5 20
1
2

20 80 5 300( ) ( )( ) .• + + = ft

 

6 1 8 1

6
1
8

1 8 8

6
1
8

2
3

1 8

6
1

12
81 1 10 304

0

10

0

10

0

10

3
2

0

10

3
2

3
2

+ -( )
+ -È

ÎÍ
˘
˚̇

+ -Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

-
Ê
ËÁ

ˆ
¯̃

=

Ú
ÚÚ

t dt

t dt dt

t t

,

,

( ) ,

.

•

•

ft

a = -
-

=20 0
5 0

24
1 8

24
5

3
+

= =
t

twhen sec.

a t v t t( ) ( ) ( ) ( ) sec .•= ¢ = +
-

6
1
2

1 8 8
1
2 2ft

 
D
D

v
t

= -
-

=48 0
10 0

24
5

2ft sec .

v t tP ( ) = + -( )6 1 8 1

Avg ft( )
( )

. .F
F t dt

=
-

ªÚ0

24

24 0
35 116

F t
t

( ) cos= - +Ê
Ë

ˆ
¯35 3

3
4
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Auto P won the race.

AB5. (a) Using the differential equation, evaluate the derivative at each point, 
then sketch a short segment having that slope. For example, at (–1,–1), 

= 2(–1)((–1)2 + 1) – 4; draw a steeply decreasing segment at (–1,–1). 

Repeat this process at each of the other points. The result follows.

(b) The differential equation = 2x(y2 + 1) is separable.

= 2xdx

arctan (y) = x2 + c
y = tan (x2 + c)

It is given that f passes through (0,1), so 1 =  tan (02 + c) and c = . 

The solution is f(x) = tan .x2

4
+





π

π
4

∫
dy

y2 1+∫

dy
dx

x

y

(–1,1)

(–1,0)

(–1,–1)

(0,1)

(0,0)

(0,–1)

(1,1)

(1,0)

(1,–1)

dy
dx

(5,20)

(10,80)

80

20

5(0,0) 5
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The particular solution must be differentiable on an interval containing the
initial point (0,1), hence 

x2 + < (where the tan function has a vertical asymptote)

x2 < 

|x| < 

AB 6. (a)

(b) One estimate might be 

(c)

(d) f ¢(x) = F≤(x). F≤ is negative when F is concave downward, which is true
for the entire interval 0 < x < 8.

(e) 

Then the graph of G is the graph of F translated downward 4 units.

F

G

8

6

4

2

–2

–4

2 4 6 8

 

G x f t dt

f t dt f t dt

F x

x

x

( ) ( )

( ) ( )

( ) .

=

= -

= -

Ú
ÚÚ

2

0

2

0

4

f x F x F x x( ) ( ); ( ) .= ¢ ¢ = =0 4at

f t dt F F( ) ( ) ( ) .
2

7

7 2 2 4 2Ú = - = - = -

f t dt F( ) ( ) .
0

2

2 4Ú = =

π
2

π
4

π
2

π
4
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1   A     B     C     D     E  A     B     C     D     E

2   A     B     C     D     E  A     B     C     D     E

3   A     B     C     D     E  A     B     C     D     E

4   A     B     C     D     E  A     B     C     D     E

5   A     B     C     D     E  A     B     C     D     E

6   A     B     C     D     E  A     B     C     D     E

7   A     B     C     D     E  A     B     C     D     E

8   A     B     C     D     E  A     B     C     D     E

9   A     B     C     D     E  A     B     C     D     E

10   A     B     C     D     E  A     B     C     D     E

11   A     B     C     D     E  A     B     C     D     E

12   A     B     C     D     E  A     B     C     D     E

13   A     B     C     D     E  A     B     C     D     E

14   A     B     C     D     E  A     B     C     D     E

15   A     B     C     D     E  A     B     C     D     E

16   A     B     C     D     E  A     B     C     D     E

17   A     B     C     D     E  A     B     C     D     E

18   A     B     C     D     E  A     B     C     D     E

19   A     B     C     D     E  A     B     C     D     E

20   A     B     C     D     E  A     B     C     D     E

21   A     B     C     D     E  A     B     C     D     E

22   A     B     C     D     E  A     B     C     D     E

23   A     B     C     D     E  A     B     C     D     E

24   A     B     C     D     E  A     B     C     D     E

25   A     B     C     D     E  A     B     C     D     E

26   A     B     C     D     E  A     B     C     D     E

27   A     B     C     D     E  A     B     C     D     E

28   A     B     C     D     E  A     B     C     D     E

29   A     B     C     D     E  A     B     C     D     E

30   A     B     C     D     E  A     B     C     D     E

31   A     B     C     D     E  A     B     C     D     E

32   A     B     C     D     E  A     B     C     D     E

33   A     B     C     D     E  A     B     C     D     E

34   A     B     C     D     E  A     B     C     D     E

35   A     B     C     D     E  A     B     C     D     E

36   A     B     C     D     E  A     B     C     D     E

37   A     B     C     D     E  A     B     C     D     E

38   A     B     C     D     E  A     B     C     D     E

39   A     B     C     D     E  A     B     C     D     E

40   A     B     C     D     E  A     B     C     D     E

41   A     B     C     D     E  A     B     C     D     E

42   A     B     C     D     E  A     B     C     D     E

43   A     B     C     D     E  A     B     C     D     E

44   A     B     C     D     E  A     B     C     D     E

45   A     B     C     D     E  A     B     C     D     E

Answer Sheet
B C  P R A C T I C E  E X A M I N A T I O N  1

Part A

29   A     B     C     D     E  A     B     C     D     E

30   A     B     C     D     E  A     B     C     D     E

31   A     B     C     D     E  A     B     C     D     E

32   A     B     C     D     E  A     B     C     D     E

33   A     B     C     D     E  A     B     C     D     E

34   A     B     C     D     E  A     B     C     D     E

35   A     B     C     D     E  A     B     C     D     E

36   A     B     C     D     E  A     B     C     D     E

37   A     B     C     D     E  A     B     C     D     E

38   A     B     C     D     E  A     B     C     D     E

39   A     B     C     D     E  A     B     C     D     E

40   A     B     C     D     E  A     B     C     D     E

41   A     B     C     D     E  A     B     C     D     E

42   A     B     C     D     E  A     B     C     D     E

43   A     B     C     D     E  A     B     C     D     E

44   A     B     C     D     E  A     B     C     D     E

45   A     B     C     D     E  A     B     C     D     E

Part B

!
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1. is

(A) !5 (B) " (C) 0 (D) 5 (E) 1

2. is

(A) 0 (B) ln 2 (C) (D) (E) "

3. If x = and y = sin!1 t, then equals

(A) ! (B) !t (C) (D) 2 (E) –

Questions 4 and 5. Use the following table, which shows the values of the differentiable
functions f and g.

1
t

t
t1 2−

1 2− t
t

dy
dx

1 2− t

1
2ln

1
2

lim
ln( ) ln

h

h
h→

+ −
0

2 2

lim
x

x x
x→ ∞

− +
−

20 13 5
5 4

2

3

599

BC Practice Examination 1

The use of calculators is not permitted for this part of the examination.
There are 28 questions in Part A, for which 55 minutes are allowed. To compensate
for possible guessing, the grade on this part is determined by subtracting one-fourth
of the number of wrong answers from the number answered correctly.

Directions: Choose the best answer for each question.

SECTION I 

Part A TIME:  55 MINUTES BC
 P

ra
ct

ic
e 

Ex
am

in
at

io
n 

1

x f f ! !g g!

1 2 !3 5

2 3 1 !0 4

3 4 2 !2 3

4 6 4 !3
1
2

1
2
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4. The average rate of change of function f on [1,4] is

(A) 7/6 (B) 4/3 (C) 15/8 (D) 9/4 (E) 8/3

5. If h(x) = g(f(x)) then h#(3) = 

(A) 1/2 (B) 1 (C) 4 (D) 6 (E) 9

6. (3x – 2)3 dx is equal to

(A) (B) (C) (D) (E) none of these

7. If y = , then equals

(A) (B) (C)

(D) (E)

8. The maximum value of the function f (x) = xe–x is

(A) (B) e (C) 1 (D) !1 (E) none of these

9. Which equation has the slope field shown below?

(A) (B) (C)

(D) (E)
dy
dx

x y= +dy
dx

y= 5

dy
dx

x
y

=dy
dx x

= 5dy
dx y

= 5

1
e

−
−

13
2 5 2( )x

17
2 5 2( )− x

x
x

−
−

3
2 5 2( )

13
2 5 2( )− x

17 10
2 5 2

−
−

x
x( )

dy
dx

x
x

−
−

3
2 5

85
4

13
3

63
4

16
3

1

2
∫
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Questions 10–12. The graph below shows the velocity of an object moving along a line, 
for 0 $ t $ 9.

10. At what time does the object attain its maximum acceleration?

(A) 2 % t % 5 (B) 5 % t % 8 (C) t= 6 (D) t= 8 (E) 8 % t % 9

11. The object is farthest from the starting point at t = 

(A) 2 (B) 5 (C) 6 (D) 8 (E) 9

12. If x = 2 sin θ, then is equivalent to:

(A) 4 sin2 θ dθ (B) 4 sin2 θ dθ (C) 2 sin θ tan θ dθ

(D) dθ (E) 4 sin2 θ dθ

13. (1 – |x| ) dx equals

(A) 0 (B) (C) 1 (D) 2 (E) none of these

14.

(A) = 0 (B) = 1 (C) = e (D) = " (E) does not exist

15. A differentiable function has the values shown in this table:

Estimate f #(2.1).

(A) 0.34 (B) 0.59 (C) 1.56 (D) 1.70 (E) 1.91

lim /

x

xx
→ ∞

1

1
2

−∫ 1

1

π / 2

0
∫

2 2

20

2 sin
cos

θ
θ∫

0

2π /
∫0

2π /
∫0

1
∫

x dx

x

2

20

2

4 −
∫

2

1

2 4 6 8 10
–1

–2

–3

– 4

t

v

x 2.0 2.2 2.4 2.6 2.8 3.0
f (x) 1.39 1.73 2.10 2.48 2.88 3.30
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16. If A = e–xdx is approximated using Riemann sums and the same number of 

subdivisions, and if L, R, and T denote, respectively left, right, and trapezoid sums,
then it follows that

(A) R ! A ! T ! L (B) R ! T ! A ! L (C) L ! T ! A ! R
(D) L ! A ! T ! R (E) None of these is true.

17. If = y tan x and y = 3 when x = 0, then, when x = , y =

(A) ln (B) ln 3 (C) (D) (E) 6

18.

(A) (B) (C) dx

(D) (E)

19. The equation of the curve shown below is y = . What does the area of the 

shaded region equal?

(A) 4 – (B) 8 " 2π (C) 8 " π (D) 8 " (E) 2π " 4

20. Find the slope of the curve r = cos 2θ at θ = .

(A) (B) (C) 0 (D) (E) –

21. A particle moves along a line with velocity, in feet per second, v = t2 " t. The total
distance, in feet, traveled from t = 0 to t = 2 equals

(A) (B) (C) 2 (D) 1 (E)
4
3

2
3

1
3

33
1
3

3
7

π
6

π
2

π
4

x

y

(–1,0) (1,0)

(0,4)

4
1 2+ x

f x dx( )
1

7
∫f x dx( )

1

5
∫

f x( )+
−∫ 1

1

5
f x dx( )

−∫ 1

5
f x dx( )

−∫ 1

7

f x dx( )− =∫ 1
0

6

3 3
2

3
2

3

π
3

dy
dx

0

1
∫
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22. The general solution of the differential equation = is a family of

(A) straight lines (B) circles (C) hyperbolas
(D) parabolas (E) ellipses

23. The curve x3&x tan y = 27 passes through (3,0). Use local linearization to estimate the
value of y at x = 3.1. The value is

(A) !2.7 (B) !0.9 (C) 0 (D) 0.1 (E) 3.0

24. x cos x dx = 

(A) x sin x & cos x & C (B) x sin x ! cos x & C

(C) sin x + C (D) sin x2 + C (E) none of these

25. The work done in lifting an object is the product of the weight of the object and the
distance it is moved. A cylindrical barrel 2 feet in diameter and 4 feet high is half-full
of oil weighing 50 pounds per cubic foot. How much work is done, in foot-pounds,
in pumping the oil to the top of the tank?

(A) 100π (B) 200π (C) 300π (D) 400π (E) 1200π

26. The coefficient of the (x – 8)2 term in the Taylor polynomial for y = x2/3 around 
x = 8 is

(A) – (B) – (C) – (D) (E)

27. If f #(x) = h(x) and g(x) = x3, then f(g(x)) = 

(A) h(x3) (B) 3x2h(x) (C) h#(x) (D) 3x2h(x3) (E) x3h(x3)

28. e–x/2 dx =

(A) !" (B) !2 (C) 1 (D) 2 (E) "

0

∞
∫

d
dx

1
6

1
144

1
9

1
72

1
144

4 '

2 '

1
2

x2

2

∫

1 2− x
y

dy
dx

END OF PART A, SECTION I

STOP
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29. The path of a satellite is given by the parametric equations

x = 4 cos t & cos 12t,

y = 4 sin t & sin 12t.

The upward velocity at t = 1 equals

(A) 2.829 (B) 3.005 (C) 3.073 (D) 3.999 (E) 12.287

30. As a cup of hot chocolate cools, its temperature after t minutes is given by 
H(t) = 70 + ke–0.4t. If its initial temperature was 120°F, what was its average 
temperature (in °F) during the first 10 minutes?

(A) 60.9 (B) 82.3 (C) 95.5 (D) 96.1 (E) 99.5

31. An object moving along a line has velocity v (t)= t cos t ! ln (t & 2), where 0 $ t $ 10.
The object achieves its maximum speed when t =

(A) 3.743 (B) 5.107 (C) 6.419 (D) 7.550 (E) 9.538

32. The graph of f #, which consists of a quarter-circle and two line segments, is shown
above. At x = 2 which of the following statements is true?

(A) f is not continuous.
(B) f is continuous but not differentiable.
(C) f has a relative maximum.
(D) The graph of f has a point of inflection.
(E) none of these

4321
x

f ′

Some questions in this part of the examination require the use of a graphing 
calculator. There are 17 questions in Part B, for which 50 minutes are allowed. 
The deduction for incorrect answers on this part is the same as that for Part A. 

Directions: Choose the best answer for each question. If the exact numerical value 
of the correct answer is not listed as a choice, select the choice that is closest to the 
exact numerical answer.

Part B TIME:  50 MINUTES
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33. Let H(x) = f (t)dt, where f is the function whose graph appears below.

The tangent line approximating H(x) near x = 3 is H(x)!

(A) !2x " 8 (B) 2x ! 4 (C) !2x " 4 (D) 2x ! 8 (E) 2x ! 2

34. The table shows the speed of an object, in feet per second, at various times during a
6-second interval. 

Estimate the distance the object travels, using the trapezoid method.

(A) 89 ft (B) 90 ft (C) 96 ft (D) 120 ft (E) 147 ft

35. In a marathon, when the winner crosses the finish line many runners are still on 
the course, some quite far behind. If the density of runners x miles from the finish
line is given by R(x) = 20[1 ! cos(1 " 0.03x2)] runners per mile, how many are
within 8 miles of the finish line?

(A) 30 (B) 145 (C) 157 (D) 166 (E) 195

36. Find the volume of the solid generated when the region bounded by the y-axis, y = ex,
and y = 2 is rotated around the y-axis.

(A) 0.296 (B) 0.592 (C) 2.427 (D) 3.998 (E) 27.577

37. If f (t) = dx, then f #(t) equals

(A) (B) (C) (D) (E) tan!1 t22
1 4

t
t+

1
1 4+ t

2
1 2

t
t+

1
1 2+ t

1
1 20

2

+∫ x
t

2

3

4

1

654321

–1

–2 (1,–2)

(4,4)

f

0

x
∫

time (sec) 00 01 04 6

speed (ft/sec) 30 22 12 0
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38. You wish to estimate ex, over the interval ÙxÙ ! 2, with an error less than 0.001. 
The Lagrange error term suggests that you use a Taylor polynomial at 0 with degree
at least

(A) 6 (B) 9 (C) 10 (D) 11 (E) 12

39. Find the volume of the solid formed when one arch of the cycloid defined parametri-
cally by x = θ " sin θ, y = 1 " cos # is rotated around the x-axis.

(A) 15.708 (B) 17.306 (C) 19.739 (D) 29.609 (E) 49.348

40. Which definite integral represents the length of the first quadrant arc of the curve 

defined by x(t) = et, y(t) = 1 – t 2?

(A) (B) (C)

(D) (E)

41. For which function is the Taylor series about 0?

(A) ex (B) e"x (C) sin x (D) cos x (E) ln (1 $ x)

42. The hypotenuse AB of a right triangle ABC is 5 feet, and one leg, AC, is decreasing at
the rate of 2 feet per second. The rate, in square feet per second, at which the area is
changing when AC = 3 is

(A) (B) (C) – (D) – (E) –

43. At how many points on the interval [0,π] does f(x) = 2 sin x + sin 4x satisfy the 
Mean Value Theorem?

(A) none (B) 1 (C) 2 (D) 3 (E) 4

44. Which one of the following series converges?

(A) (B) (C)

(D) (E)

45. The rate at which a purification process can remove contaminants from a tank of wa-
ter is proportional to the amount of contaminant remaining. If 20% of the contaminant
can be removed during the first minute of the process and 98% must be removed to
make the water safe, approximately how long will the decontamination process take?

(A) 2 min (B) 5 min (C) 18 min (D) 20 min (E) 40 min

1
12

1 nn +=

∞

∑n
nn

2
1 1+=

∞

∑

1
2 11 nn +=

∞

∑1

1 nn =

∞

∑1

1 nn =

∞

∑

7
2

7
4

3
2

7
4

25
4

( )
( )!

−
=

∞

∑ 1
2

2

0

n n

n

x
n

e t dtt
e

e 2 2
1

4+∫ /
e t dtt2 2

0

1
4+∫

e t dtt2 2
1

1
4+

−∫1
4 2

21
+∫

t
e

dtte

e

/
1

4 2

21

1 +
−∫

t
e

dtt

END OF SECTION I

STOP

7_4324_APCalc_26BCExam1  10/4/09  5:59 PM  Page 606



BC Practice Examination 1 607

BC
 P

ra
ct

ic
e 

Ex
am

in
at

io
n 

1

END OF PART A, SECTION II

STOP

SECTION II 

Part A TIME:  45 MINUTES

3 PROBLEMS

A graphing calculator is required for some of these problems. 
See instructions on page 4.

1. A function f is defined on the interval [0,4], and its derivative is 
f #(x) = esinx - 2 cos 3x. 

(a) Sketch f # in the window [0,4] ¥ [–2,5].

(Note that the following questions refer to f.)

(b) On what interval is f increasing? 

(c) At what value(s) of x does f have local maxima?  Justify your answer.

(d) How many points of inflection does the graph of f have? Justify your answer.

2. The velocity of an object in motion in the plane for 0 £ t £ 1 is given by the vector

(a) When is this object at rest?

(b) If this object was at the origin when t = 0, what are its speed and position when 
t = 1?

(c) Find an equation of the curve the object follows, expressing y as a function of x.

3. (a) A spherical snowball melts so that its surface area shrinks at the constant rate of
10 square centimeters per minute. What is the rate of change of volume when the
snowball is 12 centimeters in diameter?

(b) The snowball is packed most densely nearest the center. Suppose that, when it
is 12 centimeters in diameter, its density x centimeters from the center is given 

by grams per cubic centimeter. What is the total number of grams 

(mass) of  the snowball then?

d x
x

( ) =
+

1
1

 
v t

t

t

t
( ) =

- -
Ê
ËÁ

ˆ
¯̃

1

4 42 2
, .
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Part B TIME:  45 MINUTES

3 PROBLEMS

No calculator is allowed for any of these problems.
If you finish Part B before time has expired, you may return to work on Part A, but you
may not use a calculator.

4. (a) Write the Maclaurin series (including the general term) for f(x) = ln(e + x).

(b) What is the radius of convergence?

(c) Use the first three terms of that series to write an expression that estimates the

value of 

5. After pollution-abatement efforts, conservation researchers introduce 100 trout into a
small lake. The researchers predict that after m months the rate of growth, F, of the

trout population will be modeled by the differential equation 

(a) How large is the trout population when it is growing the fastest?

(b) Solve the differential equation, expressing F as a function of m.

(c) How long after the lake was stocked will the population be growing the fastest?

6. Given the function f(x) = e2x(x2 - 2):

(a) For what values of x is f decreasing? 

(b) Does this decreasing arc reach a local or a global minimum? 
Justify your answer.

(c) Set up, but do not evaluate, a definite integral in terms of a single variable for the
length of this decreasing arc of the curve.

 
dF
dm

F F= -( )0 0002 600. .

 !0

1
2ln .e x dx+( )

END OF TEST

STOP
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Answer Key
B C  P R A C T I C E  E X A M I N A T I O N  1

11. C
12. C
13. E
14. B
15. B
16. D
17. E

18. A
19. A
10. E
11. C
12. B
13. C
14. B

15. D
16. A
17. E
18. B
19. B
20. A
21. D

22. E
23. B
24. A
25. C
26. A
27. D
28. D

29. E
30. B
31. E
32. D
33. D

34. A
35. D
36. B
37. D

38. C
39. E
40. C
41. D

42. D
43. E
44. E
45. C

Part A

Part B
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ANSWERS EXPLAINED
The explanations for questions not given below will be found in the answer section for
AB Practice Examination 1 on pages 527–532. Identical questions in Section I of Practice
Examinations AB1 and BC1 have the same number. For example, explanations of the 
answers for Question 1, not given below, will be found in Section I of Calculus AB
Practice Examination 1, Answer 1, page 527.

Multiple-Choice

Part A
3. (E) Here,

= = = – .

6. (D) (3x – 2)3(3dx) = (3x – 2)4 .

12. (B) Note that, when x = 2 sin ', x2 = 4 sin2 ', dx = 2 cos ' d', and =
2 cos '. Also,

when x = 0, ' = 0;

when x = 2, .

13. (C) The given integral is equivalent to (1 + x) dx + (1 – x) dx.

The figure shows the graph of f (x) = 1 – |x| on [–1,1].

The area of triangle PQR is equal to (1 – |x| ) dx.

14. (B) Let y = x1/x ; then take logarithms. ln y = . As x Æ ", the fraction is of the 

form "/". ln y = . So y Æ e0 or 1.lim
/

x

x
→ ∞

1
1

lim
x→ ∞

ln x
x

−∫ 1

1

x

y

0–1 1

P

RQ

0

1
∫−∫ 1

0

π
2

4 2− x

1

21
12

1
3 1

2
∫

1
t

1

1
1
2

2

1

2

2

−
−

−

t
t

t

( )

dy
dt
dx
dt

dy
dx
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17. (E) Separating variables yields = tan x, so ln y = !ln cos x " C. With y = 3 

when x = 0, C = ln 3. The general solution is therefore (cos x) y = 3. When 

x = ,

cos x = and y = 6.

20. (A) Represent the coordinates parametrically as (r cos #, r sin #). Then

= = .

Note that = –2 sin 2#, and evaluate at # = . (Alternatively, write

x = cos 2# cos # and y = cos 2# sin# to find from .)

21. (D) Note that v is negative from t = 0 to t = 1, but positive from t = 1 to t = 2. Thus
the distance traveled is given by

– (t2 – t) dt + (t2 – t) dt.

22. (E) Separating variables yields y dy = (1 ! 2x) dx. Integrating gives

y2 = x – x2 + C or y2 = 2x – 2x2 + k or 2x2 + y2 – 2x = k.

24. (A) Use parts; then u = x, dv = cos x dx; du = dx, v = sin x. Thus, 

x cos x dx = x sin x – sin x dx.

4

4–y

x

y

2

∆ y

r = 1

0

∫∫

1
2

1

2
∫0

1
∫

dy d
dx d

/
/

θ
θ

dy
dx

π
6

dy
dx

dr
dθ

r dr
d

r dx
d

cos sin

sin

θ + θ θ

θ θ θ

·

· cos− +

dy
d
dx
d

θ

θ

dy
dx

1
2

π
3

dy
y

7_4324_APCalc_26BCExam1  10/4/09  6:01 PM  Page 611



612 AP Calculus
BC

 P
ra

ct
ic

e 
Ex

am
in

at
io

n 
1

25. (C) Using the above figure, consider a thin slice of the oil, and the work (w done
in raising it to the top of the tank:

(w = (weight of oil) ) (distance raised)

(w = (50 . π . 12 (y)(4 ! y)

The total work is thus 50π (4 – y) dy.

26. (A) By Taylor’s Theorem, the coefficient is . For f(x) = , f ′(x) = 

and f ′′(x) = – ; hence f ′′(8) = , making the 

coefficient .

27. (D) Here,

f(g(x)) = f ′(g(x))g ′(x) = h(g(x))g′(x) = h(x3) · 3x2.

28. (D) Evaluate

e–x/2 dx = – 2e–x/2 = –2(0 – 1).

Part B
29. (E) The vertical component of velocity is

= 4 cos t + 12 cos 12 t.

Evaluate at t = 1.

30. (B) At t = 0, we know H = 120, so 120 = 70 + ke–0.4(0), and thus k = 50. The 

average temperature for the first 10 minutes is (70 + 50e–0.4t )dt.
1

10 0 0

10

− ∫

dy
dt

0

b
lim
b→ ∞

lim
b

b

→ ∞ ∫0

d
dx

− ⋅1
72

1
2!

− = − ⋅ = −
−2

9
8

2
9

1
16

1
72

4
3( )

2
9

4
3x

−

2
3

1
3x

−
x

2
3′′f ( )

!
8

2

0

2
∫
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36. (B)

Using disks, (V = πR2(y = π(ln y)2 (y. Evaluate

The required volume is 0.592.

38. (C) The Maclaurin expansion is

The Lagrange remainder R, after n terms, for some c in the interval 
ÙxÙ * 2, is

R = = .

Since R is greatest when c = 2, n needs to satisfy the inequality

< 0.001.

Using a calculator to evaluate y = successively at various integral 

values of x gives y(8) + 0.01, y(9) + 0.002, y(10) % 3.8 ) 10!4 % 0.0004.
Thus we achieve the desired accuracy with a Taylor polynomial at 0 of 
degree at least 10.

e
x

x2 12
1

+

+( )!

e
n

n2 12
1

+

+( )!

e c
n

c n +

+

1

1( )! 

f c c
n

n n( ) ( )
( )!

+ +

+

1 1

1
i

 
e x

x x x
n

x
n

= + + + + ◊ ◊ ◊ + + ◊ ◊ ◊ ◊1
2 3

2 3

! ! !

V y dy= ( )∫ π ln .2

1

2

x

y

0

(x,y)

y = 2

y = ex

1
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39. (E) On your calculator, graph one arch of the cycloid for t in [0, 2π] and (x,y) in
[0, 7] ! ["1, 3]. Use disks; then the desired volume is

V = π y2 dx

= π (1 – cos t)2(1 – cos t) dt

= π (1 – cos t)3 dt

! 49.348.

40. (C) In the first quadrant, both x and y must be positive; x(t) = et is positive for
all t, but y(t) = 1 – t 2 is positive only for –1 < t < 1. The arc length is

.

41. (D) See series (2) on page 426.

44. (E) Each is essentially a p-series, . Such a series converges only 

if p # 1.

 
1
n pÂ

dx
dt

dy
dt

dt e t
t

t t



 + 



 = ( ) + −( )∫

2 2
2 2

1

2 2
−−∫ 1

1
dt

0

2π
∫

0

2π
∫

t

t

=

=
∫ 0

2π

3.0

–1.0

7.0

(x,y)
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Free-Response

Part A
1. See solution for AB-1, pages 532–533.

2. (a) Because which never equals zero, the object is never at rest.

(b) so the object’s speed is 

Position is the antiderivative of velocity 

Since P(0) = (0,0), and thus c = 0.

Since P(0) = (0,0), and thus c = 2.

Then

(c) Solving for t yields t = 2sinx. Therefore

Since 0 £ t £ 1 means then so 

3. See solution for AB-3, page 534.

 y x= -2 2cos .cos ,x > 0
 
0

6
£ £x

p
,

 y x x x= - - ( ) = - - = -2 4 2 2 2 1 2 22 2sin sin cos .

x
t= arcsin
2

P 1 1
2

2 4 1
6

2 3( ) = − −( ) = −( )arcsin , , .π

P t t t( ) = − −( )arcsin , ,
2

2 4 2

- - + =4 0 02 c ,

  
y

t

t
dt t tdt t c=

-
= - -( ) -( ) = - - +-! !

4

1
2

4 2 4
2

2 1 2 2 .
 
arcsin ,

0
2

0+ =c

 

x
t

dt
dt

t

t
c=

-
=

- Ê
Ë

ˆ
¯

= +! !1

4
2

1
2

1
2

1
2

22 2
 • arcsin .

 
v t

t

t

t
( ) =

- -
Ê
ËÁ

ˆ
¯̃

1

4 42 2
, .

v 1
1
3

1
3

2
3

2 2

( ) = Ê
ËÁ

ˆ
¯̃ + Ê

ËÁ
ˆ
¯̃ = .

v 1
1

4 1

1

4 1

1
3

1
32 2

( ) =
- -

Ê
ËÁ

ˆ
¯̃

= Ê
ËÁ

ˆ
¯̃, , ,

 

dx
dt t

=
-
1

4 2
,
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Part B
4. (a) To write the Maclaurin series for use Taylor’s theorem at x = 0.

(b) By the Ratio Test, the series converges when

Thus, the radius of convergence is e.

(c)

5. (a) To find the maximum rate of growth, first find the derivative of 

which equals 0 when F = 300.

A signs analysis shows that changes from positive to negative there, con-

firming that is at its maximum when there are 300 trout.
dF
dm

d F
dm

2

2

 
d F
dm

F
2

2 0 0002 600 2= -( ). ,

dF
dm

F F F F= -( ) = -( )0 0002 600 0 0002 600 2. . .

 
!

0

1

 ln .
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e x dx x
x
e

x
e e e

+( ) ª + -Ê
ËÁ
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3 5

2
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1

23 5 2
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2 2 2
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1
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n
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n e
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x
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+

1
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3

1
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0 1 1
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3 3e
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(b) The differential equation is separable.

To integrate the left side of this equation, use the method of partial fractions.

Let F = 0; then 

Let F = 600; then 

Since F = 100 when m = 0, so c = 5.

The solution is 

(c) In (a)  the population was found to be growing the fastest when F = 300. Then:

 
m =

-
ln

.

1
5

0 12
months.

 e
m- =0 12 1

5
. ,

300
600

1 5 0 12=
+ -e m. ,

F
e m=

+ -

600
1 5 0 12. .

100 600
1

= + c
,

F
ce m=

+ -

600
1 0 12. .

= =ce c em C0 12. , , where 

F
F

e m C

600
0 12

-
= +.

ln . ,
F

F
m C

600
0 12

-
Ê
Ë

ˆ
¯ = +

ln ln . ,F F m C- -( ) = +600 0 12

 ! ! !1
1

1
600

0 12
F

dF
F

dF dm+ -( ) -
-

= . ,

  
1

600
1 1

600
0 0002! !F F

dF dm+
-

Ê
Ë

ˆ
¯ = . ,

 
B = 1

600
.

A = 1
600

.

 1 600= -( ) + ( )A F B F .

1
600 600F F

A
F

B
F-( ) = +

-
,

 
! !dF

F F
dm

600
0 0002

-( ) = . .

 
dF
dm

F F= -( )0 0002 600.
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6. (a) See solution for AB-6(a), page 536.

(b) See solution for AB-6(b), page 536.

(c) Find the arc length using 

  
L e x x dxx= + +( ) -( )[ ]

-
!

2

1
2 2

1 2 2 1 .

  
L

dy
dx

dx= + Ê
Ë

ˆ
¯! 1

2

:
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1   A     B     C     D     E  A     B     C     D     E

2   A     B     C     D     E  A     B     C     D     E

3   A     B     C     D     E  A     B     C     D     E

4   A     B     C     D     E  A     B     C     D     E

5   A     B     C     D     E  A     B     C     D     E

6   A     B     C     D     E  A     B     C     D     E

7   A     B     C     D     E  A     B     C     D     E

8   A     B     C     D     E  A     B     C     D     E

9   A     B     C     D     E  A     B     C     D     E

10   A     B     C     D     E  A     B     C     D     E

11   A     B     C     D     E  A     B     C     D     E

12   A     B     C     D     E  A     B     C     D     E

13   A     B     C     D     E  A     B     C     D     E

14   A     B     C     D     E  A     B     C     D     E

15   A     B     C     D     E  A     B     C     D     E

16   A     B     C     D     E  A     B     C     D     E

17   A     B     C     D     E  A     B     C     D     E

18   A     B     C     D     E  A     B     C     D     E

19   A     B     C     D     E  A     B     C     D     E

20   A     B     C     D     E  A     B     C     D     E

21   A     B     C     D     E  A     B     C     D     E

22   A     B     C     D     E  A     B     C     D     E

23   A     B     C     D     E  A     B     C     D     E

24   A     B     C     D     E  A     B     C     D     E

25   A     B     C     D     E  A     B     C     D     E

26   A     B     C     D     E  A     B     C     D     E

27   A     B     C     D     E  A     B     C     D     E

28   A     B     C     D     E  A     B     C     D     E

29   A     B     C     D     E  A     B     C     D     E

30   A     B     C     D     E  A     B     C     D     E

31   A     B     C     D     E  A     B     C     D     E

32   A     B     C     D     E  A     B     C     D     E

33   A     B     C     D     E  A     B     C     D     E

34   A     B     C     D     E  A     B     C     D     E

35   A     B     C     D     E  A     B     C     D     E

36   A     B     C     D     E  A     B     C     D     E

37   A     B     C     D     E  A     B     C     D     E

38   A     B     C     D     E  A     B     C     D     E

39   A     B     C     D     E  A     B     C     D     E

40   A     B     C     D     E  A     B     C     D     E

41   A     B     C     D     E  A     B     C     D     E

42   A     B     C     D     E  A     B     C     D     E

43   A     B     C     D     E  A     B     C     D     E

44   A     B     C     D     E  A     B     C     D     E

45   A     B     C     D     E  A     B     C     D     E

Answer Sheet
B C  P R A C T I C E  E X A M I N A T I O N  2

Part A

29   A     B     C     D     E  A     B     C     D     E

30   A     B     C     D     E  A     B     C     D     E

31   A     B     C     D     E  A     B     C     D     E

32   A     B     C     D     E  A     B     C     D     E

33   A     B     C     D     E  A     B     C     D     E

34   A     B     C     D     E  A     B     C     D     E

35   A     B     C     D     E  A     B     C     D     E

36   A     B     C     D     E  A     B     C     D     E

37   A     B     C     D     E  A     B     C     D     E

38   A     B     C     D     E  A     B     C     D     E

39   A     B     C     D     E  A     B     C     D     E

40   A     B     C     D     E  A     B     C     D     E

41   A     B     C     D     E  A     B     C     D     E

42   A     B     C     D     E  A     B     C     D     E

43   A     B     C     D     E  A     B     C     D     E

44   A     B     C     D     E  A     B     C     D     E

45   A     B     C     D     E  A     B     C     D     E

Part B

!
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1. A function f (x) equals for all x except x = 1. For the function to be continuous 

at x = 1, the value of f (1) must be

(A) 0 (B) 1 (C) 2 (D) ! (E) none of these

2. is

(A) 2 (B) 0 (C) (D) 1 (E) nonexistent

3. The first four terms of the Taylor series about x = 0 of are

(A) (B) (C)

(D) (E)

4. Using the line tangent to f (x) = at x = 0, an estimate of f (0.06) is

(A) 0.02 (B) 2.98 (C) 3.01 (D) 3.02 (E) 3.03

9 2+ sin( )x

− + − +1
2 8 16

2 3x x x1
4 24 32

2 3

+ − +x x x

1
2 8 16

2 3

+ − +x x xx x x x+ + +
2 3 4

2 8 48
1

2 4 2
3
8 6

2 3

− + ⋅ − ⋅
x x x

1 + x

1
2

lim
sin

x

x

x→0

2

x x
x

2

1
−
−

621

BC Practice Examination 2

The use of calculators is not permitted for this part of the examination.
There are 28 questions in Part A, for which 55 minutes are allowed. To compensate
for possible guessing, the grade on this part is determined by subtracting one-fourth
of the number of wrong answers from the number answered correctly.

Directions: Choose the best answer for each question.

SECTION I 

Part A TIME:  55 MINUTES

BC
 P

ra
ct

ic
e 

Ex
am

in
at

io
n 

2

7_4324_APCalc_27BCExam2  10/4/09  6:03 PM  Page 621



622 AP Calculus
BC

 P
ra

ct
ic

e 
Ex

am
in

at
io

n 
2

5. Air is escaping from a balloon at a rate of R(t) = cubic feet per minute, where

t is measured in minutes. How much air, in cubic feet, escapes during the first
minute?

(A) 15 (B) 15π (C) 30 (D) 30π (E) 30 ln 2

6. The motion of a particle in a plane is given by the pair of equations x = cos 2t, 
y = sin 2t. The magnitude of its acceleration at any time t equals

(A) 2 (B) 2 (C) 4 (D) 4 (E) 16

7. Let f (x) = (x – 1) + + · · ·

The interval of convergence of f ′(x) is

(A) 0 ! x ! 2 (B) 0 ! x < 2 (C) 0 < x ! 2
(D) 0 < x < 2 (E) only x = 1

8. A point moves along the curve y = x2 " 1 so that the x-coordinate is increasing at the

constant rate of units per second. The rate, in units per second, at which the 

distance from the origin is changing when the point has coordinates (1, 2) is equal to

(A) (B) (C) (D) (E)

9.

(A) = 0 (B) = (C) = 1 (D) = 10 (E) does not exist

10. sec2x tan2 x dx equals

(A) (B) (C) (D) 3 (E) 3

11. ln x dx equals

(A) (B) e # 1 (C) e " 1 (D) 1 (E) #1
1
2

1

e

∫

333
3

1
3

0

3π /

∫

1
10

lim
h

h
h→

+ −
0

25 5

5
15
2

3 5
3 5

2
7 5

0

3
2

( ) ( ) ( )x x x− + − + −1
4

1
9

1
16

2 3 4

22

60
1 2+ t
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12. dy equals

(A) (B) y2 – y + ln|2y | + C (C)

(D) (E)

13.

(A) ln x2 (x # 3) " C (B) #ln x2 (x # 3) " C

(C) (D) (E) none of these

14. Given f $ as graphed, which could be a graph of f ?

(A) I only (B) II only (C) III only
(D) I and III (E) none of these

15. The first woman officially timed in a marathon was Violet Piercey of Great Britain in
1926. Her record of 3:40:22 stood until 1963, mostly because of a lack of women
competitors. Soon after, times began dropping rapidly, but lately they have been 
declining at a much slower rate. Let M(t) be the curve that best represents winning
marathon times in year t. Which of the following is negative?

I. M(t)
II. M$(t)

III. M%(t)

(A) I only (B) II only (C) III only
(D) II and III (E) none of these

 
ln

x
x

C
- +3

2
ln

x
x

C
2

3-
+

  !
x

x x
dx

-
-

=6
32

1
2

1
2 2− +

y
C

( )y
y

C
− +1

3

3

2

y y y C2 4
1
2

2− + +ln
y

y y C
2

4
1
2

− + +ln

( )y
y

−
∫

1
2

2
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16. The graph of f is shown above. Let G(x) = f(t)dt and H(x) = f (t) dt. Which of 

the following is true?

(A) G(x) = H(x) (B) G $(x) = H $(x " 2) (C) G(x) = H(x " 2)
(D) G(x) = H(x) # 2 (E) G(x) = H(x) " 3

17. The minimum value of f (x) = x2 + on the interval ! x ! 2 is

(A) (B) 1 (C) 3 (D) 4 (E) 5

18. Which function could be a particular solution of the differential equation whose slope
field is shown above?

(A) y = x3 (B) (C) (D) y = sin x (E) y = e-x2

19. A particular solution of the differential equation = x + y passes through the 

point (2,1). Using Euler’s method with ∆x = 0.1, estimate its y-value at x = 2.2.

(A) 0.34 (B) 1.30 (C) 1.34 (D) 1.60 (E) 1.64

dy
dx

y
x

x
=

+

2

2 1
y

x
x

=
+

2
12

1
2

1
2

1
2

2
x

2

x
∫0

x
∫
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Questions 20 and 21. Use the graph below, consisting of two line segments and a quarter-
circle. The graph shows the velocity of an object during a 6-second interval.

20. For how many values of t in the interval 0 < t < 6 is the acceleration undefined?

(A) none (B) one (C) two (D) three (E) four

21. During what time interval (in sec) is the speed increasing?

(A) 0 & t & 3 (B) 3 & t & 5 (C) 3 & t & 6
(D) 5 & t & 6 (E) never

22. If = (x > 0, y > 0) and y = 3 when x = 1, then

(A) x2 " y2 = 10 (B) y = x " ln3 (C) y2 # x2 = 8
(D) y = 3x (E) y2 # 3x2 = 6

23. A solid is cut out of a sphere of radius 2 by two parallel planes each 1 unit from the
center. The volume of this solid is

(A) 8π (B) (C) (D) (E)

24. Which one of the following improper integrals converges?

(A) (B) (C)

(D) (E) none of these

25. Let f (x) = x5 + 3x – 2, and let f -1 denote the inverse of f. Then ( f -1)¢(2) equals

(A) (B) (C) 1 (D) 8 (E) 83
1
8

1
83

dx
x( )2 31

3

−∫

dx
x( )20 1+

∞

∫dx
x1

∞

∫dx
x( )+−∫ 1 21

1

20
3

π22
3

π25
3

π32
3

π

y
x

dy
dx

v

t (sec)
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26. Find the domain of the particular solution of = 1 + y2 that passes through the 
origin.

(A) all x (B) x ≥ 0 (C) x ≠ ± (D) |x| < (E) 0 ≤ x < 

27. Which of the following statements is (are) true about the graph of y = ln (4 ! x2)?

I. It is symmetric to the y-axis.
II. It has a local minimum at x = 0.

III. It has inflection points at x = "2.

(A) I only (B) II only (C) III only
(D) I and II only (E) I, II, and III

28. is

(A) # (B) (C) (D) (E) nonexistent
π
3

π
4

π
6

π
3

dx

x4 21

2

−
∫

π
2

π
2

π
2

dy
dx

END OF PART A, SECTION I

STOP
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29. The area bounded by the curve x = 3y # y2 and the line x = #y is represented by

(A) (2y – y2) dy (B) (4y – y2) dy (C) (3y – y2) dy + y dy

(D) (y2 – 4y) dy (E) (2y – y2) dy

30. Find the area bounded by the spiral r = ln θ on the interval π ! θ ! 2π.

(A) 2.405 (B) 2.931 (C) 3.743 (D) 4.810 (E) 7.487

31. Write an equation for the line tangent to the curve defined by F(t) = (t2 + 1,2 t) at the
point where y = 4.

(A) y – 4 = ln 2(x – 2) (B) y – 4 = 4 ln 2(x – 2) (C) y – 4 = 4(x – 5)
(D) y – 4 = ln 2(x – 5) (E) y – 4 = 4 ln 2(x – 5)

32. Which infinite series converge(s)?

I. II. III.

(A) I only (B) II only (C) III only
(D) I and III only (E) none of these

33. Bacteria in a culture increase at a rate proportional to the number present. An initial
population of 200 triples in 10 hours. If this pattern of increase continues unabated,
then the approximate number of bacteria after 1 full day is

(A) 1160 (B) 1440 (C) 2408 (D) 2793 (E) 8380

3
1

2

3
1

n
nn +=

∞

∑3
3

1

n

n n=

∞

∑3

1

n

n n!=

∞

∑

0

3
∫0

3
∫

0

4
∫0

3
∫0

4
∫0

4
∫

Some questions in this part of the examination require the use of a graphing 
calculator. There are 17 questions in Part B, for which 50 minutes are allowed. 
The deduction for incorrect answers on this part is the same as that for Part A. 

Directions: Choose the best answer for each question. If the exact numerical value 
of the correct answer is not listed as a choice, select the choice that is closest to the 
exact numerical answer.

Part B TIME:  50 MINUTES
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34. When the substitution x = 2t # 1 is used, the definite integral dt may be 

expressed in the form k (x + 1) dx, where {k, a, b} = 

(A) (B) (C)

(D) (E)

35. The curve defined by x3 " xy # y2 = 10 has a vertical tangent line when x = 

(A) 0 or – (B) 1.037 (C) 2.074 (D) 2.096 (E) 2.154

Questions 36 and 37. Use the graph of f shown on [0,7]. Let G(x) = f(t) dt.

36. G$(1) is

(A) 1 (B) 2 (C) 3 (D) 6 (E) undefined

37. G has a local maximum at x = 

(A) 1 (B) (C) 2 (D) 5 (E) 8

38. If the half-life of a radioactive substance is 8 years, how long will it take, in years,
for two thirds of the substance to decay?

(A) 4.68 (B) 7.69 (C) 12 (D) 12.21 (E) 12.68

4
3

2

3 1x −
∫

1
3

1
2

5 9, ,







1
2

2 3, ,







1
4

5 9, ,







1
4

3 5, ,







1
4

2 3, ,







x
a

b
∫

t t2 1
3

5 −∫
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39. Using the left rectangular method and four subintervals of equal width, estimate 

, where f is the function graphed below.

(A) 4 (B) 5 (C) 8 (D) 15 (E) 16

40. The area in the first quadrant bounded by the curve with parametric equations 
x = 2a tan θ and y = 2acos2 θ, and the lines x = 0 and x = 2a, is equal to

(A) πa2 (B) 2πa2 (C) (D) (E) none of these

41. The base of a solid is the region bounded by x2 = 4y and the line y = 2, and each plane
section perpendicular to the y-axis is a square. The volume of the solid is

(A) 8 (B) 16 (C) 20 (D) 32 (E) 64

42. An object initially at rest at (3,3) moves with acceleration a(t) = (2,e!t). Where is the
object at t = 2?

(A) (4,e!2) (B) (4,e!2 " 2) (C) (7,e!2)
(D) (7,e!2 " 2) (E) (7,e!2 " 4)

43. Find the length of the curve y = ln x between the points where y = and y = 1.

(A) 0.53 (B) 0.86 (C) 1.18 (D) 1.36 (E) 10.02

1
2

πa
2

πa
4

f t dt( )∫0

8
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44. Using the first two terms in the Maclaurin series for y = cosx yields accuracy to
within 0.001 over the intervalx < k when k = 

(A) 0.032 (B) 0.394 (C) 0.786 (D) 0.788 (E) 1.570

45. After t years, 50e #0.015t pounds of a deposit of a radioactive substance remain. 
The average amount per year not lost by radioactive decay during the second 
hundred years is

(A) 2.9 lb (B) 5.8 lb (C) 7.4 lb (D) 11.1 lb (E) none of these

END OF SECTION I

STOP

7_3679_APCalc_27BCExam2  10/3/08  4:37 PM  Page 630



BC Practice Examination 2 631

BC
 P

ra
ct

ic
e 

Ex
am

in
at

io
n 

2

SECTION II 

Part A TIME:  45 MINUTES

3 PROBLEMS

A graphing calculator is required for some of these problems. 
See instructions on page 4.

1. Let function f be continuous and decreasing, with values as shown in the table:

(a) Use the trapezoid ehmtod to estimate the area between f and the x-axis on the 
interval 2.5 ≤ x ≤ 5.0.

(b) Find the average rate of change of f on the interval 2.5 ≤ x ≤ 5.0.

(c) Estimate the instantaneous rate of change of f at x = 2.5.

(d) If g(x) = f –1(x), estimate the slope of g at x = 4.

2. An object starts at point (1,3), and moves along the parabola y = x2 + 2 for 0 ≤ t ≤ 2, 

with the horizontal component of its velocity given by .

(a) Find the object’s position at t = 2.

(b) Find the object’s speed at t = 2.

(c) Find the distance the object traveled during this interval.

3. Let R be the region bounded by r = 2 + cos 2θ, as shown above.

(a) Find the dimensions of the smallest rectangle that contains R and has sides 
parallel to the x- and y-axes. 

(b) Find the area of R.

–3.0

3.0

– 4.0 4.0

–3.0

3.0

– 4.0 4.0

dx
dt t

=
+
4

42

END OF PART A, SECTION II

STOP

x 2.5 3.2 3.5 4.0 4.6 5.0

f(x) 7.6 5.7 4.2 3.8 2.2 1.6
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Part B TIME:  45 MINUTES

3 PROBLEMS

No calculator is allowed for any of these problems.
If you finish Part B before time has expired, you may return to work on Part A, but you
may not use a calculator.

4. Given a function f such that f(3) = 1 and .

(a) Write the first four nonzero terms and the general term of the Taylor series for f
around x = 3. 

(b) Find the radius of convergence of the Taylor series.

(c) Show that the third-degree Taylor polynomial approximates f(4) to within 0.01.

5. A bungee jumper has reached a point in her exciting plunge where the taut cord is
100 feet long with a 1/2-inch radius, and stretching. She is still 80 feet above the
ground and is now falling at 40 feet per second. You are observing her jump from 
a spot on the ground 60 feet from the potential point of impact, as shown in the 
diagram above.

f
n

n
n

n

n
( ) ( ) = −( )

+( )
3

1
2 1 2

!
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(a) Assuming the cord to be a cylinder with volume remaining constant as the cord
stretches, at what rate is its radius changing when the radius is 1/2″?

(b) From your observation point, at what rate is the angle of elevation to the jumper
changing when the radius is 1/2″?

6. The figure above shows the graph of f, whose domain is the closed interval 

[-2,6]. Let .

(a) Find F(–2) and F(6).

(b) For what value(s) of x does F(x) = 0?

(c) For what value(s) of x is F increasing?

(d) Find the maximum value and the minimum value of F.

(e) At what value(s) of x does the graph of F have points of inflection? 
Justify your answer.

F x f t dt
x

( ) = ( )∫1

END OF TEST

STOP
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Answer Key
B C  P R A C T I C E  E X A M I N A T I O N  2

11. B
12. C
13. C
14. D
15. B
16. C
17. B

18. B
19. B
10. C
11. D
12. A
13. C
14. D

15. B
16. E
17. C
18. B
19. E
20. C
21. B

22. D
23. D
24. C
25. B
26. D
27. E
28. D

29. B
30. C
31. D
32. A
33. D

34. C
35. C
36. D
37. B

38. E
39. E
40. A
41. D

42. E
43. C
44. B
45. B

Part A

Part B
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ANSWERS EXPLAINED
The explanations for questions not given below will be found in the answer section 
for AB Practice Exam 2 on pages 554–564. Identical questions in Section I of Practice
Examinations AB2 and BC2 have the same number. For example, explanations of the 
answers for Questions 4 and 5, not given below, will be found in Section I of Calculus
AB Practice Exam 2, Answers 4 and 5, page 554.

Multiple-Choice

Part A
1. (B) Since f (x) = 1, to render f (x) continuous at x = 1, define f (1) to be 1.

2. (C) Note that

,

where you let = θ.

3. (C) Obtain the first few terms of the Maclaurin series generated by 

f (x) = :

f (x) = ; f(0) = 1;

f ′(x) = (1 + x)–1/2; f ′(0) = ;

f ′′(x) = – (1 + x)–3/2; f ′′(0) = – ;

f ′′′(x) = – (1 + x)–5/2; f ′′′(0) = ;

So = 1 + – . . . .

6. (C) Here,

= –2 sin 2t, = 2 cos 2t,  

and

= –4 cos 2t, = –4 sin 2t;
d y
dt

2

2

d x
dt

2

2

dy
dt

dx
dt

x x x
2

1
4 2

3
8 6

2 3

− ⋅ + ⋅1 + x

3
8

3
8

1
4

1
4

1
2

1
2

1 + x

1 + x

x
2

sin sin
lim

sin
x

x

x

x
2 2

2
2

1
2 0

= = 



→θ

θ
θ

lim
x→1
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and the magnitude of the acceleration, a, is given by

a = 

= 

= = 4.

7. (B) f ′(x) = 1 + + · · ·

By the Ratio Test (page 415) the series converges when

Checking the endpoints, we find:

f ′(0) = is the alternating harmonic series, which converges. 

f ′(2) = is the harmonic series, which diverges. 

Hence the interval of convergence is 0 ≤ x < 2.

10. (C)

11. (D) We integrate by parts using u = ln x, dv = dx; then du = dx, v = x, and

= e lne # e # (1 ln1 # 1) = e # e # (0 # 1) = 1.

13. (C) Use the method of partial fractions, letting

.

x – 6 = A(x – 3) + Bx

Letting x = 0, we find A = 2, and letting x = 3 yields B = –1. 

Now .
2 1

3
2 3

x x
dx x x C−

−




 = − − +∫ ln ln

x
x x

A
x

B
x

−
−

= +
−

6
3 3( )

ln ln lnx dx x x x
x

dx x x x
e e e

1 1 1

1∫ ∫= −



 = −( )

1
x

(tan ) (sec )
tan

( ).
/ /

x x dx
x2 2

0

3 3

0

3

3
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19. (E) At (2,1), = 3. Use ∆x= 0.1; then Euler’s method moves to (2.1, 1 ! 3(0.1)). 

At (2.1, 1.3), = 3.4, so the next point is (2.2, 1.3 ! 3.4(0.1)).

22. (D) Separate variables to get = , and integrate to get ln y = lnx ! C. 

Since y = 3 when x = 1, C = ln3. Then y = e(ln x + ln 3) = elnx · eln 3 = 3x.

23. (D) The generating circle has equation x2 ! y2 = 4. Using disks, the volume, V,
is given by

V = .

24. (C) . The integrals in (A), (B), and (D) all diverge 

to infinity.

26. (D) Using separation of variables:

= 1 + y2

arctan y = x + C

y = tan (x + C)

Given initial point (0,0), we have 0 = tan(0 + C); hence C = 0 and the 
particular solution is y = tan(x).

Because this function has vertical asymptotes at x = ± and the particular 

solution must be differentiable in an interval containing the initial point 

x = 0, the domain is |x| < . 

28. (D)
1

4

1

4

1
2

2 2 2 2−
=

−
=







∫ → →− −
x

dx
x

dx
dx

h h1

2
lim lim



− 
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=

∫∫ →

−

→

−

1
2

2211 2

1

1

2

x

xhh

h

h

h

lim sin

lim
−−

− −−



 = − =sin sin .1 1

2
1
2 2 6 3

h π π π

π
2

π
2
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y

dx
1 2+

=∫ ∫

dy
dx

dx
x

x
b

b

20

1

01 2+
= =

∞

→∞

−∫ lim tan
π

π π π
0

1
x dy y dy y

y2 2
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1

1

0

1

2 4 2 4
3
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Part B
30. (C) Since the equation of the spiral is r = ln θ, use the polar mode. The formula

for area in polar coordinates is

.

Therefore, calculate

The result is 3.743.

31. (D) When y = 2t = 4, we have t = 2, so the line passes through point F(2) = (5,4). 

Also = , so at t = 2 the slope of the tangent line is 

= ln 2.

An equation for the tangent line is y – 4 = ln 2(x – 5).

32. (A) I. converges by the Ratio Test: .

II. diverges by the nth Term Test: .

III. diverges by the Comparison Test: , and 

diverges.

38. (E) If Q0 is the initial amount of the substance and Q is the amount at time t, then

Q = Q0e
"kt.

When t = 8, Q = Q0, so

Q0 = Q0e
–8k

and = e–8k. Thus k = 0.08664. Using a calculator, find t when Q = Q0. 

= e–0.08664t so t ≈ 12.68. Don’t round off k too quickly.

40. (A) See figure below.

A = y dx = 2a cos2 θ · 2a sec2 θ dθ = 4a2 dθ = 4a2 θ = πa2

0

4π /

0

4π /

∫θ

θ π

=

=

∫ 0

4/

0

2a

∫

1
3

1
3

1
2

1
2

1
2

1

1 nn=

∞

∑3
1

12

3

n
n n+

>
3

1

2

3
1

n
nn +=

∞

∑

lim
n

n

n→∞
= ∞3

3

3
3

1

n

n n=

∞

∑

lim
( )!

!n n

nn
n→∞ +

+ ⋅ =1
3

3 1
31

3

1

n

n n!=

∞

∑

dy
dx

dy
dt
dx
dt

t

t

= 2 2
2
lndy

dx

  
0 5 2

2

. ln .
p

p
q qÚ d

1
2

2r d
θ

θ

1

2∫ θ
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41. (D) See figure below.

∆V = (2x)2 ∆y = 4x2 ∆y,

= 16y ∆y

V = 16y dy.

42. (E) v(t) = (2t ! c1, "e"t ! c2); v(0) = (0,0) yields c1 = 0 and c2 = 1. 
R(t) = (t2 ! c3, e

"t ! t ! c4); R(0) = (3,3) yields R(t) = (t2 ! 3, e"t ! t ! 2).

43. (C) The endpoints of the arc are and (e,1). The arc length is given by 

or 

44. (B) Find k such that cos x will differ from by less than 0.001 at x = k.

Solve

which yields x or k = 0.394.

0 1
2

0 001
2

= − −





−cos . ,x
x

1
2

2

−






x

1 1
2

2

1
2

1

1

2 +






= + ( )∫ ∫
dx
dy

dy e dy
y

y x1 1
12 2

1

2 + 



 = + 



∫ ∫

dy
dx

dx
x

dx
x

x

e

e

e , 1
2( )

0

2

∫

x

y0
(0,2)

(x,y)

∆ x

x

y

0 ∆ x

2a cos2 θ

2a

0

2a

θ = 0

θ =

A =   y d x =  = πa22a cos2 θ •  2a sec2 θ dθ = 4a2θ 

π
4

π
4

0
! !
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Free-Response

Part A

1. See solution for AB-1, page 561. 

2. (a) Position is the antiderivative of :

To find c, substitute the initial condition that x = 1 when t = 0:

At t = 2, , and the position of the object 

is .

(b) At t = 2, . Since y = x2 + 2, , and at t = 2, 

, 

(c) The distance traveled is the length of the arc of y = x2 + 2 in the interval 

:

3. (a) To find the smallest rectangle with sides parallel to the x- and y-axes, you need a
rectangle formed by vertical and horizontal tangents as shown in the figure. The
vertical tangents are at the x-intercepts, x = '3. The horizontal tangents are at the
points where y (not r) is a maximum. You need, therefore, to maximize

Use the calculator to find that when q = 0.7854.  Therefore, y = 1.414, 

so the desired rectangle has dimensions 6 ¥ 2.828.

dy
dθ

= 0

dy
dθ

θ θ θ θ= +( ) + −( )2 2 2 2cos cos sin sin .

y r= = +( )sin cos sin ,θ θ θ2 2

   
L

dy
dx

dx x dx= + Ê
Ë

ˆ
¯ = + ( ) =

+! !1 1 2 5 839
2

1

2 21p
. .

1
2

1< < +x
π

speed = 



 + 



 = 



 + +





dx
dt
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2 2 2 21
2 2

1
π

.
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Ë

ˆ
¯ = +2

2
1

1
2 2

1
p p

•
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x
dx
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= 2
dx
dt

=
+

=4
2 4

1
22

π π
2

1
2

1 2
2

+ +



 +







,

  
x = + = + = +2

2
2

1 2
4

1
2

1 arctan •
p p

1 2
0
2

1 2
2

1= + = = + arctan  shows  and  arctan c c x
t

, .

  

x
t

dt
t

dt
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t

t
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=
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Ê
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ˆ
¯ +

=
Ê
Ë

ˆ
¯ +

= +
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4
4

1

2
1

2

1
2

2
1

2
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(b) Since the polar formula for the area is the area of R (enclosed by r) is 

which is 14.137.

Part B

4. (a)

.

(b) By the Ratio Test, the series converges when

Thus, the radius of convergence is 2.

(c) f(4) = is an alternating series. Since < 

and = 0 it converges by the Alternating Series Test. Therefore 

the error is less than the magnitude of the first omitted term:

.

5. See solution for AB-5, page 563.

6. See solution for AB-6, page 564.
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1   A     B     C     D     E  A     B     C     D     E

2   A     B     C     D     E  A     B     C     D     E

3   A     B     C     D     E  A     B     C     D     E

4   A     B     C     D     E  A     B     C     D     E

5   A     B     C     D     E  A     B     C     D     E

6   A     B     C     D     E  A     B     C     D     E

7   A     B     C     D     E  A     B     C     D     E

8   A     B     C     D     E  A     B     C     D     E

9   A     B     C     D     E  A     B     C     D     E

10   A     B     C     D     E  A     B     C     D     E

11   A     B     C     D     E  A     B     C     D     E

12   A     B     C     D     E  A     B     C     D     E

13   A     B     C     D     E  A     B     C     D     E

14   A     B     C     D     E  A     B     C     D     E

15   A     B     C     D     E  A     B     C     D     E

16   A     B     C     D     E  A     B     C     D     E

17   A     B     C     D     E  A     B     C     D     E

18   A     B     C     D     E  A     B     C     D     E

19   A     B     C     D     E  A     B     C     D     E

20   A     B     C     D     E  A     B     C     D     E

21   A     B     C     D     E  A     B     C     D     E

22   A     B     C     D     E  A     B     C     D     E

23   A     B     C     D     E  A     B     C     D     E

24   A     B     C     D     E  A     B     C     D     E

25   A     B     C     D     E  A     B     C     D     E

26   A     B     C     D     E  A     B     C     D     E

27   A     B     C     D     E  A     B     C     D     E

28   A     B     C     D     E  A     B     C     D     E

29   A     B     C     D     E  A     B     C     D     E

30   A     B     C     D     E  A     B     C     D     E

31   A     B     C     D     E  A     B     C     D     E

32   A     B     C     D     E  A     B     C     D     E

33   A     B     C     D     E  A     B     C     D     E

34   A     B     C     D     E  A     B     C     D     E

35   A     B     C     D     E  A     B     C     D     E

36   A     B     C     D     E  A     B     C     D     E

37   A     B     C     D     E  A     B     C     D     E

38   A     B     C     D     E  A     B     C     D     E

39   A     B     C     D     E  A     B     C     D     E

40   A     B     C     D     E  A     B     C     D     E

41   A     B     C     D     E  A     B     C     D     E

42   A     B     C     D     E  A     B     C     D     E

43   A     B     C     D     E  A     B     C     D     E

44   A     B     C     D     E  A     B     C     D     E

45   A     B     C     D     E  A     B     C     D     E

Answer Sheet
B C  P R A C T I C E  E X A M I N A T I O N  3

Part A

29   A     B     C     D     E  A     B     C     D     E

30   A     B     C     D     E  A     B     C     D     E

31   A     B     C     D     E  A     B     C     D     E

32   A     B     C     D     E  A     B     C     D     E

33   A     B     C     D     E  A     B     C     D     E

34   A     B     C     D     E  A     B     C     D     E

35   A     B     C     D     E  A     B     C     D     E

36   A     B     C     D     E  A     B     C     D     E

37   A     B     C     D     E  A     B     C     D     E

38   A     B     C     D     E  A     B     C     D     E

39   A     B     C     D     E  A     B     C     D     E

40   A     B     C     D     E  A     B     C     D     E

41   A     B     C     D     E  A     B     C     D     E

42   A     B     C     D     E  A     B     C     D     E

43   A     B     C     D     E  A     B     C     D     E

44   A     B     C     D     E  A     B     C     D     E

45   A     B     C     D     E  A     B     C     D     E

Part B

!
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11. (where [x] is the greatest integer in x) is

(A) 1 (B) 2 (C) 3 (D) ! (E) nonexistent

2. is

(A) 1 (B) "1 (C) 0 (D) ! (E) none of these

3.

(A) = . (B) = 1. (C) = 3. (D) = 4. (E) diverges.

4. The equation of the tangent to the curve 2x2 " y4 = 1 at the point ("1, 1) is

(A) y = "x (B) y = 2 " x (C) 4y # 5x # 1 = 0
(D) x " 2y # 3 = 0 (E) x " 4y # 5 = 0

5. The nth term of the Taylor series expansion about x = 0 of the function is

(A) (2x)n (B) 2xn " 1 (C)

(D) ("1)n " 1(2x)n " 1 (E) ("1)n (2x)n " 1

x n

2

1






−

f x
x

( ) =
+
1

1 2

3
4

3

4 1
0

n

n
n

+
=

∞

∑

lim
sin

h

h

h→

+



 −

0

2
1

π

 
lim x
x

[ ]
Æ2

645

BC Practice Examination 3

The use of calculators is not permitted for this part of the examination.
There are 28 questions in Part A, for which 55 minutes are allowed. To compensate
for possible guessing, the grade on this part is determined by subtracting one-fourth
of the number of wrong answers from the number answered correctly.

Directions: Choose the best answer for each question.

SECTION I 

Part A TIME:  55 MINUTES
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6. When the method of partial fractions is used to decompose one of the 
fractions obtained is

(A) (B) (C) (D) (E)

7. A relative maximum value of the function is

(A) 1 (B) e (C) (D) (E) none of these

8. When a series is used to approximate , the value of the integral, to two 
decimal places, is

(A) "0.09 (B) 0.29 (C) 0.35 (D) 0.81 (E) 1.35

9. A particular solution of the differential equation whose slope field is shown above
contains point P. This solution may also contain which other point?

(A) $ (B) B (C) C (D) D (E) E

10. Let Which of the following statements is (are) true?

I. The domain of F is x π %1.
II. F(2) > 0.

III. The graph of F is concave upward.

(A) none (B) I only (C) II only
(D) III only (E) II and III only

11. As the tides change, the water level in a bay varies sinusoidally. At high tide today at
8 A.M., the water level was 15 feet; at low tide, 6 hours later at 2 P.M., it was 3 feet.
How fast, in feet per hour, was the water level dropping at noon today?

(A) 3 (B) (C) (D) (E) 6 3π 33 3
π 3

2

  
F x

dt
t

x

( ) =
-!

5
21

.

  !0

0 3 2.

e dxx-

1
e

2
e

y
x

x
= ln

5
1x −

2
1x −

1
1x −

−
−
2

1x
−

−
5

1x

2 4
3 2

2

3 2

x x
x x x

− +
− +

,
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12. Let Then 

(A) !3π (B) !1 (C) 0 (D) 1 (E) 3π

13. du is equal to

(A) ln(1 " e2u) " C (B) ln|1 + eu | + C (C) tan–1eu + C

(D) tan–1eu + C (E) tan–1e2u + C

14. Given f (x) = log10x and log10(102) ! 2.0086, which is closest to f ′(100)?

(A) 0.0043 (B) 0.0086 (C) 0.01 (D) 1.0043 (E) 2

15. If G(2) = 5 and , then an estimate of G(2.2) using a tangent-line

approximation is 

(A) 5.4 (B) 5.5 (C) 5.8 (D) 8.8 (E) 13.8

16. The area bounded by the parabola y = x2 and the lines y = 1 and y = 9 equals

(A) 8 (B) (C) (D) 32 (E)

17. The first-quadrant region bounded by , y = 0, x = q (0 < q < 1), and x = 1 is 

rotated about the x-axis. The volume obtained as q Æ 0" equals

(A) (B) (C) 2π (D) 4π (E) none of these

18. A curve is given parametrically by the equations

x = 3 ! 2 sin t and y = 2 cos t ! 1.

The length of the arc from t = 0 to t = # is

(A) (B) π (C) 2 " π (D) 2π (E) 4π

19. Suppose the graph of f is both increasing and concave up on a $ x $ b. Then, using
the same number of subdivisions, and with L, R, M, and T denoting, respectively, left,
right, midpoint, and trapezoid sums, it follows that

(A) R $ T $ M $ L (B) L $ T $ M $ R (C) R $ M $ T $ L
(D) L $ M $ T $ R (E) none of these

π
2

4π
3

2
3
π

y
x

= 1

104
3

64
3

2
84
3

′( ) =
−

G x
x
x

10
9 2

1
2

1
2

1
2

 
" e

e

u

u1 2+

f 3( ) =
 
"

0

x

f t dt x x( ) = sin .#
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20. Which of the following statements about the graph of is (are) true?

II. The graph has no horizontal asymptote.
II. The line x = 2 is a vertical asymptote.

III. The line y = x # 2 is an oblique asymptote.

(A) I only (B) II only (C) I and II only
(D) I and III only (E) all three

21. The only function that does not satisfy the Mean Value Theorem on the interval 
specified is

(A) on ["3, 1]

(B) on [1, 3]

(C) on ["1, 2]

(D) on ["1, 1]

(E)

22.

(A) "3e " 1 (B) "e (C) e " 2 (D) 3e (E) 4e " 1

23. A cylindrical tank, shown in the figure above, is partially full of water at time t = 0,
when more water begins flowing in at a constant rate. The tank becomes half full
when t = 4, and is completely full when t = 12. Let h represent the height of the water 

at time t. During which interval is increasing?

(A) none (B) 0 < t < 4 (C) 0 < t < 8 (D) 0 < t < 12
(E) 4 < t < 12

dh
dt

hours
t =12

t = 4 h

t = 0

  !0

1
2x e dxx =

 
f x x( ) = È

ÎÍ
˘
˚̇

2 3 1
2

3
2

 on ,

f x x
x

( ) = + 1

f x
x x

x( ) = − +
3 2

3 2

f x
x

( ) = 1

f x x x( ) = −2 2

y
x

x
=

−

2

2
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24. The graph of function f shown above consists of three quarter-circles.

Which of the following is (are) equivalent to ?

II.

III.

IIII.

(A) I only (B) II only (C) III only
(D) I and II only (E) all three

25. The base of a solid is the first-quadrant region bounded by , and each
cross section perpendicular to the x-axis is a semicircle with a diameter in the 
xy-plane. The volume of the solid is

(A) (B) (C)

(D) (E)

26. The average value of on the interval ["2, 4] is

(A) (B) (C) (D) (E) 6

27. The area inside the circle r = 3 sin & and outside the cardioid r = 1 # sin & is 
given by

(A) (B)

(C) (D)

(E) none of these

   
9
4

1
2

1
6

5 6 2'
'

'

− +( )! sinq qd
   
1
2

8 1
6

5 6
2!

'

'

sin q −( )dq

   !'

'

6

2 22 1sinq q−( ) d
   !'

'

6

2
2 29 1sin sinq q q− +( )[ ]d

5
1
3

4
2
3

3
1
3

2
2
3

f x x( ) = +3

 
π
8

4
0

4 4 24! −( )y dyπ
4

4
0

2 4 2! −( )y dy

π
8

4 2
2

2!−
− x dxπ

8
4 2

0

2! − x dxπ
2

4 2
0

2! − x dx

 y x= -4 24

 
1
2 0

4! f x dx( )

  !4

2

f x dx( )

  
1
2 2

2!-
( )f x dx

  !0

2

f x dx( )

1 2–2 –1

43

–1

–2

2

1

x

f
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28. Let

Which of the following statements is (are) true?

I. f is defined at x = 6.

II.

III. f is continuous at x = 6.

(A) I only (B) II only (C) I and II only
(D) I, II, and III (E) none of the statements

 
lim f x
x

( )
Æ6

 exists.

f x
x
x x

x

( ) =
-
- πÏ

Ì
Ô

ÓÔ

2 36
6 6

12

if 

if = 6.

,

END OF PART A, SECTION I

STOP
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29. Two objects in motion from t = 0 to t = 3 seconds have positions x1(t) = cos(t2 # 1)

and respectively. How many times during the 3 seconds do the objects

have the same velocity?

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

30. The table below shows values of f ″(x) for various values of x:

The function f could be

(A) a linear function (B) a quadratic function (C) a cubic function
(D) a fourth-degree function (E) an exponential function

31. Where, in the first quadrant, does the rose r = sin 3& have a vertical tangent?

(A) nowhere (B) & = 0.39 (C) & = 0.47
(D) & = 0.52 (E) & = 0.60

32. A cup of coffee placed on a table cools at a rate of °F per minute,

where H represents the temperature of the coffee and t is time in minutes. If the 
coffee was at 120∞F initially, what will its temperature be 10 minutes later?

(A) 73∞F (B) 95∞F (C) 100∞F (D) 118∞F (E) 143∞F

33. An investment of $4000 grows at the rate of 320e0.08t dollars per year after t years. 
Its value after 10 years is approximately

(A) $4902 (B) $8902 (C) $7122
(D) $12,902 (E) none of these

dH
dt

H= − −( )0 05 70.

x t
e
t

t

2 2
( ) = ,

Some questions in this part of the examination require the use of a graphing 
calculator. There are 17 questions in Part B, for which 50 minutes are allowed. 
The deduction for incorrect answers on this part is the same as that for Part A. 

Directions: Choose the best answer for each question. If the exact numerical value 
of the correct answer is not listed as a choice, select the choice that is closest to the 
exact numerical answer.

Part B TIME:  50 MINUTES

x "1 "0 1 2 3
"4 "1 2 5 8′′( )f x
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s

34. The sketch shows the graphs of f(x) = x2 – 4x – 5 and the line x = k. The regions 
labeled A and B have equal areas if k = 

(A) 5 (B) 7.766 (C) 7.899 (D) 8 (E) 11

Questions 35 and 36. The graph shows the velocity of an object during the interval 
0 ≤ t ≤ 9.

35. The object attains its greatest speed at t = 

(A) 2 sec (B) 3 sec (C) 5 sec (D) 6 sec (E) 8 sec

36. The object was at the origin at t = 3. It returned to the origin

(A) at t = 5 sec (B) at t = 6 sec (C) during 6 < t < 7 sec
(D) at t = 7 sec (E) during 7 < t < 8 sec

x

y

0

x = k

y = x2 – 4x – 5

B

A

(This figure is not drawn to scale.)
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37. An object in motion in the plane has acceleration vector a(t) = (sin t, e-t) for 
0 ( t ( 5. It is at rest when t = 0. What is the maximum speed it attains?

(A) 1.022 (B) 1.414 (C) 2.217 (D) 2.958 (E) 3.162

38. If is replaced by u, then is equivalent to

(A) (B) (C)

(D) (E)

39. The set of all x for which the power series converges is

(A) {"3, 3} (B) ÙxÙ < 3 (C) ÙxÙ > 3
(D) "3 ( x < 3 (E) "3 < x ( 3

40. A particle moves along a line with acceleration a = 6t. If, when t = 0, v = 1, then the
total distance traveled between t = 0 and t = 3 equals

(A) 30 (B) 28 (C) 27 (D) 26 (E) none of these

41. The definite integral represents the length of an arc. If one end of 

the arc is at the point (1,2), then an equation describing the curve is

(A) y = 3 ln x + 2 (B) y = x + 3 ln x + 1 (C) y = 11 – 

(D) y = 9 – + 10 (E) y = 9 + – 8

42. Suppose at x = 3 is equal to

(A) "20 (B) 10 (C) 20 (D) 38 (E) 42

43. Which statement is true?

(A) If f (x) is continuous at x = c, then f ′(c) exists.
(B) If f ′(c) = 0, then f has a local maximum or minimum at (c, f (c)).
(C) If f ′′(c) = 0, then the graph of f has an inflection point at (c, f (c)).
(D) If f is differentiable at x = c, then f is continuous at x = c.
(E) If f is continuous on (a, b), then f maintains a maximum value on (a, b).

f f f
d
dx

f x3 2 3 5 3 2
2

2
2( ) = ′( ) = ′′( ) = − ( )( ), , .  and  Then 

9
x

9
x

9
3x

1
9
21

10
+∫ x

dx

 

x
n

n

n
n +( )=

•

Â 1 30 •

 
1
2 21

2 2

2! u
u

du
+  !3

6

2 2
u du

u +

  !3

6 2

2

2
2

u
u

du
+  

2
21

2 2

2! u du
u +  !1

2

2 2
u du

u +

  !3

6 2x
x

dx
-

x − 2
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44. The graph of f) is shown above. Which statements about f must be true for a < x < b?

I. f is increasing.
II. f is continuous.

III. f is differentiable.

(A) I only (B) II only (C) I and II only
(D) I and III only (E) all three

45. After a bomb explodes, pieces can be found scattered around the center of the 
blast. The density of bomb fragments lying x meters from ground zero is given by 

N(x) = fragments per square meter. How many fragments will be found 

within 20 meters of the point where the bomb exploded?

(A) 13 (B) 278 (C) 556 (D) 712 (E) 4383

2
1 3 2

x
x+

a b

f ¢

END OF SECTION I

STOP
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SECTION II 

Part A TIME:  45 MINUTES

3 PROBLEMS

A graphing calculator is required for some of these problems. 
See instructions on page 4.

1. Let R represent the region bounded by y = sin x and y = x4. Find:

(a) the area of R;

(b) the volume of the solid whose base is R, if all cross sections perpendicular to the 
x-axis are isosceles triangles with height 3;

(c) the volume of the solid formed when R is rotated around the x-axis.

2. The Boston Red Sox play in Fenway Park, notorious for its Green Monster, a wall 
37 feet tall and 315 feet from home plate at the left-field foul line. Suppose a batter
hits a ball 2 feet above home plate, driving the ball down the left-field line at an initial
angle of 30° above the horizontal, with initial velocity of 120 feet per second. (Since
Fenway is near sea level, assume that the acceleration due to gravity is
–32.172 ft/sec2.)

(a) Write the parametric equations for the location of the ball t seconds after it has
been hit.

(b) At what elevation does the ball hit the wall?

(c) How fast is the ball traveling when it hits the wall?

3. The table shows the depth of water, W, in a river, as measured at 4-hour intervals 
during a day-long flood. Assume that W is a differentiable function of time t.

(a) Find the approximate value of W ¢(16). Indicate units of measure.

(b) Estimate the average depth of the water, in feet, over the time interval 0 f t f 24
hours by using a trapezoidal approximation with subintervals of length Dt = 4 days.

(c) Scientists studying the flooding believe they can model the depth of the water with 

the function where F(t) represents the depth of the water, 

in feet, after t hours. Find F¢(16) and explain the meaning of your answer, with 
appropriate units, in terms of the river depth.

(d) Use the function F to find the average depth of the water, in feet, over the time 
interval 0 f t f 24 hours.

F t
t( ) = − +



35 3

3
4

cos ,

t (hr) 0 4 8 12 16 20 24

W(t) (ft) 32 36 38 37 35 33 32

END OF PART A, SECTION II

STOP
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Part B TIME:  45 MINUTES

3 PROBLEMS

No calculator is allowed for any of these problems.
If you finish Part B before time has expired, you may return to work on Part A, but you
may not use a calculator.

4. Two autos, P and Q, start from the same point and race along a straight road for 10
seconds. The velocity of P is given by feet per second. The 
velocity of Q is shown in the graph.

(a) At what time is P’s actual acceleration (in ft/sec2) equal to its average acceleration
for the entire race?

(b) What is Q’s acceleration (in ft/sec2) then?

(c) At the end of the race, which auto was ahead? Explain.

5. Given that a function f is continuous and differentiable throughout its domain, and that
f (5) = 2, f ¢(5) = -2, f ¢¢(5) = -1, and f ¢¢¢(5) = 6.

(a) Write a Taylor polynomial of degree 3 that approximates f around x = 5.

(b) Use your answer to estimate f (5.1).

(c) Let g(x) = f (2x + 5). Write a cubic Maclaurin polynomial approximation for g.

6. Let f be the function that contains the point (-1,8) and satisfies the differential 

equation .

(a) Write the equation of the line tangent to f at x = -1.

(b) Using your answer to part (a), estimate f(0).

(c) Using Euler’s method with a step size of 0.5, estimate f (0).

(d) Estimate f (0) using an integral.

dy
dx x

=
+

10
12

80

60

40

20

(0,0)
5

(5,20)

10
t (sec)

 v
 (f

t/s
ec

)

(10,80)

v t tp ( ) = + −( )6 1 8 1

END OF TEST

STOP
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Answer Key
B C  P R A C T I C E  E X A M I N A T I O N  3

11. E
12. C
13. B
14. A
15. D
16. A
17. D

18. B
19. E
10. E
11. B
12. A
13. D
14. A

15. C
16. E
17. E
18. D
19. D
20. E
21. D

22. C
23. E
24. D
25. B
26. C
27. A
28. D

29. E
30. C
31. C
32. C
33. B

34. D
35. E
36. E
37. C

38. B
39. D
40. A
41. A

42. E
43. D
44. E
45. D

Part A

Part B
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ANSWERS EXPLAINED
The explanations for questions not given below will be found in the answer section 
for AB Practice Exam 3 on pages 581–593. Identical questions in Section I of Practice
Examinations AB3 and BC3 have the same number. For example, explanations of the 
answers for Questions 1 and 2, not given below, will be found in Section I of Calculus
AB Practice Exam 3, Answers 1 and 2, page 581.

Multiple-Choice

Part A
3. (B) The series is geometric with a = and r = ; it converges 

to .

5. (D) is the sum of an infinite geometric series with first term 1 and 

common ratio –2x. The series is 1 – 2x + 4x2 – 8x3 + 16x4 – . . . .

6. (A) Assume that

Then

2x2 " x # 4 = A(x " 1)(x " 2) # Bx(x " 2) # Cx(x " 1).

Since you are looking for B, let x = 1:

2(1) " 1 # 4 = 0 # B("1) # 0; B = "5.

8. (B) Since So 

.

12. (A) f x d
dx

x x x x x( ) = ( ) = +sin cos sin .π π π π

  
!

0

0 3
2

3

0

0 3

1
3

0 3
0 027

3

.
.

.
.-( ) = - = -x dx x

x

e x e xx x" "1 1
2 2+ −−, .

2 4
1 2 1 2

2x x
x x x

A
x

B
x

C
x

− +
−( ) −( )

= +
−

+
−

.

1
1 2+ x

1
4

3
41 −

3
4

1
4 

1
4

3
16

9
64

+ + +!
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17. (E)

18. (D) See the figure below, which shows that the length of a semicircle of radius 2
is needed here. The answer can, of course, be found by using the formula
for arc length:

20. (E) lim ; lim ;
x x

f x f x
→ ∞ →

( ) = ∞ ( ) = − ∞
−2

using long division,, y x
x

= + +
−

2
4

2
.

x

y

0

(3,–1)

t = 0

t = π

The parametric equations

yield the Cartesian equation

x = 3 – 2 sin t,

(x – 3)2 + ( y + 1)2 = 4 .

y = 2 cos t – 1,{

 
s

dx
dt

dy
dt

dt t= 



 + 



 = −! !0

π

0

π2 2
22( cos ) ++ − =( sin )2 22t dt dt!0

π

x

y

0 (q,0) (1,0)∆ x

About the x-axis. Disk.
  

q

1

V =         π        d x.

(x,y)

1
x

1
x

lim
q →0+  

Note that V→ ∞ as q→0+.

∆V = πy 2 ∆x = π    ∆x,

!
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22. (C) Using parts we let u = x2, dv = exdx; then du = 2xdx, v = ex, and 

x 2exdx = x2ex – 2 xexdx .

We use parts again with u = x, dv = exdx; then du = dx, v = ex, and 

x 2exdx = x2ex – 2(x2ex – exdx) = x2ex – 2x2ex + 2ex.

Now 

23. (E) will increase above the half-full level (that is, the height of the water 

will rise more rapidly) as the area of the cross section diminishes.

27. (A) The required area is lined in the figure below.

28. (D) Note that So 

f is defined and continuous at x = 6.

f x x x f f x
x

( ) = + ≠ ( ) = ( ) =
→

6 6 6 12 12
6

if  that  and that , , lim .

x

y

0 1

π
6

r = 1 + sin θ

r = 3 sin θ

dh
dt

 
!

0

1
2 2 2

0

1
2 2 2 2 2x e dx x e x e e e e ex x x x= − + = − + −( ) ( ) ( ).

!!

!!
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Part B
29. (E) The velocity functions are

v1 = "2t sin (t2 # 1) and .

When these functions are graphed on a calculator, it is clear that they 
intersect four times during the first 3 sec, as shown below.

30. (C) Changes in values of f ¢¢ show that f ¢¢¢ may be constant. Hence f ¢¢ may be
linear, so f ¢ could be quadratic and thus f cubic.

31. (C) Expressed parametrically, x = sin3& cos&, y = sin3& sin &. is 

undefined where = "sin3& sin& # 3cos3&cos& = 0. 

Use your calculator to solve for &.

34. (D) See the figure below.

x

y

0

x = k

y = x2 – 4x – 5

B

A

(This figure is not drawn to scale.)

 
dx
dq

dy
dx

5.0

–5.0

3.0

v
t e e

t
e t

t

t t t

2 2 2

2 2

2
1

2
= ( ) −

( )
= −( )

7_3679_APCalc_28BCExam3  10/3/08  4:37 PM  Page 661



662 AP Calculus
BC

 P
ra

ct
ic

e 
Ex

am
in

at
io

n 
3

The roots of Since areas

A and B are equal, therefore, Thus,

A calculator yields k = 8.

37. (C) It is given that a(t) = (sin t, e"t). An antiderivative is

v(t) = ("cos t # c1, "e"t # c2). 

Since v(0) = (0,0), the constants are c1 = c2 = 1. The object’s speed is

.

Use a calculator to find that the object’s maximum speed is 2.217.

39. (D) Use the Ratio Test:

which is less than 1 if "3 < x < 3. When x = "3, the convergent alternating
harmonic series is obtained.

40. (A) Since , v = 3t2 # C; and since v(0) = 1, C = 1. Then 

yields s = t3 # t # C) , and you can let s(0) = 0. Then you want s(3).

v
ds
dt

t= = +3 12a
dv
dt

t= = 6

 
lim lim ,

•
•

•
•

n

n

n

n

n n

x
n

n
x

n
n

x
x

Æ•

+

+ Æ•+( )
+( ) = +

+
=

1

12 3
1 3 1

2
1
3 3

4.0

–1.0

6.0

 v t t e t( ) = - +( ) + - +( )-cos 1 12 2

 

x
x x

k
k k

k
k k

k3
2

1

3
2

3
2

3
2 5

3
2 5

1
3

2 5

3
2 5

8
3

0

- -Ê
ËÁ

ˆ
¯̃

= - -Ê
ËÁ

ˆ
¯̃

- - - +Ê
Ë

ˆ
¯

= - - - =

-

.

 !-
( )( ) =

1
0

k

f x dx .

f x x x x x x( ) = − − = −( ) +( ) = −2 4 5 5 1 1 5are and .
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41. (A) Arc length is given by . Here the integrand 

implies that , hence, y = 3 ln x + C. Since the curve contains (1,2), 

2 = 3 ln 1 + C, which yields C = 2. 

42. (E)

At x = 3; the answer is 2[2("2) # 52] = 42.

43. (D) Counterexamples are, respectively, for (A), f(x) = |x|, c = 0; for (B), f(x) =
x3, c = 0; for (C), f(x) = x4, c = 0; for (E), f(x) = x2 on ("1, 1).

d
dx

f x f x f x

d
dx

f x f x f x f x f x

ff f

2

2

2
2

2

2

2

2

( )( ) = ( ) ′( )

( )( ) = ( ) ′′( ) + ′( ) ′( )[ ]
= ′′ + ′( )[ ]

,

dy
dx x

= 3

1
9
2+

x 
! 1

2
+ ( )dy

dx dx
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Free-Response

Part A
1. See solution for AB-1, pages 589–590. 

2.

(a) The following table shows x- and y-components of acceleration, velocity, and 
position:

The last line in the table is the answer to part (a).

(b) To determine how far above the ground the ball is when it hits the wall, find out
when x = 315, and evaluate y at that time.

60 3 315
315

60 3
3 03109

315
60 3

36 075

t t

y

= = ≈





 ≈

yields 

 ft.

. sec.

.

2¢

315¢

37¢

Green
Monster

120 ft/s
ec

30 g

HORIZONTAL VERTICAL

acceleration components:

velocity :

initial velocities:

velocity components:

position :

initial position (0,2):

position components:

  
=!v dt

  
=!a dt

 

a a

v c v t c

v c v c

v t v t t

x t t c y t t t c

x c y c

x

x y

x y

x y

x y

= = -
= = - +

( ) = = ( ) = =

( ) = ( ) = - +

( ) = + ( ) = - + +
( ) = = ( ) = =

0 32 172

32 172

0 60 3 0 60

60 3 32 172 60

60 3 16 086 60

0 0 0 2

1 2

1 2

3
2

4

3 4

.

.

.

.

tt t y t t t( ) = ( ) = - + +60 3 16 086 60 22.
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(c) The ball’s speed at the moment of impact in part (b) is 

3. See solution for AB-3, pages 590–591.

Part B

4. See solution for AB-4, pages 591–592.

5. (a) The table below is constructed from the information given in Question 5 on 
page 592.

(b)

(c) Use Taylor’s theorem around x = 0.

 g x x x x( ) ª - - +2 4 2 82 3.

f 5 1 2 2 5 1 5 1
2

5 1 5 5 1 5

2 0 2

2 3. . . .

.

( ) ≈ − −( ) − −( ) + −( )
≈ − −− + =0 005 0 001 1 796. . . .

f x x x x( ) ª - -( ) - -( ) + -( )2 2 5
1
2

5 52 3.

v t v t v t

t x

v

x y( ) = ( )( ) + ( )( )
= ( ) + - +( )

Ê
ËÁ

ˆ
¯̃ ª

2 2

2 260 3 32 172 60

315
60 3

110 487

.

.

 when = 315,

ft /sec.

v t t( ) =evaluated at 
315

60 3
.

n f (n)(5)

0 2 2

1 -2 -2

2 -1 -

3 6 1

1
2

 
a

f
nn

n

= ( )( ) 5
!

n g(n)(x) g(n)(0)

0 f(2x + 5) f(5) = 2 2

1 2 f ¢(2x + 5) 2 f ¢(5) = 2(-2) = -4 -4

2 4 f ¢¢(2x + 5) 4 f ¢¢(5) = 4(-1) = -4 -2

3 8 f ¢¢¢(2x + 5) 8 f ¢¢¢(5) = 8(6) = 48 8

 
a

g
nn

n

= ( )( ) 0
!
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BC

 P
ra

ct
ic

e 
Ex

am
in

at
io

n 
3

6. (a) At (-1,8), so the tangent line is 

Therefore .

(b)

(c) At (-1,8), For Dx = 0.5, Dy = 0.5(5) = 2.5, so move to

(-1 + 0.5, 8 + 2.5) = (-0.5,10.5).

At (-0.5,10.5), For Dx = 0.5, 

Thus .

(d)

  

! !− −

−

+
= ( ) − −( ) ( ) = +

+
= + ( )
= + ( ) − −( )( )
= +

1

0

2
1

0

2

1

0

10
1

0 1 0 8
10

1

8

8 10 1

8
5
2

x
dx f f f

x
dx

x

,

.

 so 

arctan

arctan 0 arctan

'

 f 0 14 5( ) ª .

so move to - + +( )0 5 0 5 10 5 4. . , . .

 Dy = ( ) =0 5 8 4. ,

 

dy
dx

y
x

=
-Ê

Ë
ˆ
¯ +

= = ª10
1
2

1

10
5
4

82

D
D

.

dy
dx

y
x

= ª5
D
D

.

f 3 8 5 0 1 13( ) ª + +( ) = .

 f x x( ) ª + +( )8 5 1y x- = - -( )( )8 5 1 .

dy
dx x

=
+

= =10
1

10
2

52 ,

7_3679_APCalc_28BCExam3  10/3/08  4:37 PM  Page 666



667

ALGEBRA
1. QUADRATIC FORMULA. The roots of the quadratic equation

ax2 + bx + c = 0 (a | 0)

are given by

2. BINOMIAL THEOREM. If n is a positive integer, then

(a + b)n = an + nan–1b + an–2b2 + an–3b3

+ . . . + nabn–1 + bn.

3. REMAINDER THEOREM. If the polynomial Q(x) is divided by (x – a) until a constant
remainder R is obtained, then R = Q(a). In particular, if a is a root of Q(x) = 0, then
Q(a) = 0.

GEOMETRY
The sum of the angles of a triangle is equal to a straight angle (180°).

PYTHAGOREAN THEOREM

In a right triangle,
c2 = a2 + b2.

n n n( – )( – )1 2
1 2 3⋅ ⋅

n n( – )1
1 2⋅

x
b b ac

a
= ±– –

.
2 4

2

Appendix: Formulas and
Theorems for Reference
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668 AP Calculus

In the following formulas,

A is area B is area of base

S surface area r radius

V volume C circumference

b base l arc length

h height or altitude θ central angle (in radians)

s slant height

4. Triangle: A = bh.

5. Trapezoid: A = h.

6. Parallelogram: A = bh.

7. Circle: C = 2Ur; A = Ur2.

8. Circular sector: A = r2θ.

9. Circular arc: l = r θ.

10. Cylinder:

V = Ur2h = Bh.
S (lateral) = 2Urh.

Total surface area = 2Ur2 + 2Urh.

11. Cone:

V = Ur2h = Bh.

S (lateral) = Ur

Total surface area = Ur2 + Ur

12. Sphere: V = Ur3.

S = 4Ur2.

TRIGONOMETRY
BASIC IDENTITIES

13. sin2 θ + cos2 θ = 1.
14. 1 + tan2 θ = sec2 θ.
15. 1 + cot2 θ = csc2 θ.

SUM AND DIFFERENCE FORMULAS

16. sin (α ± β) = sin α cos β ± cos α sin β.
17. cos (α ± β) = cos α cos β ! sin α sin β.

18. tan (α ± β) =
 

tan tan 
1 tan  tan 

α β
α β

±
∓

.

4
3

r h2 2+ .

r h2 2+ .

1
3

1
3

1
2

b b1 2

2
+





1
2
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Appendix: Formulas and Theorems for Reference 669

DOUBLE-ANGLE FORMULAS

19. sin 2α = 2 sin α cos α.
20. cos 2α = cos2 α – sin2 α = 2 cos2 α – 1 = 1 – 2 sin2 α.
21. tan 2α = 

HALF-ANGLE FORMULAS

22. sin sin2 α = – cos 2α.

23. cos cos2 α = + cos 2α.

REDUCTION FORMULAS

24. sin (–α) = –sin α: cos (–α) = cos α.

25. sin = cos α; cos = sin α.

26. sin = cos α; cos = –sin α.

27. sin (U – α) = sin α; cos (U – α) = –cos α.
28. sin (U + α) = –sin α; cos (U + α) = –cos α.

If a, b, c are the sides of triangle ABC,
and A, B, C are respectively the opposite 
interior angles, then:

29. LAW OF COSINES. c2 = a2 + b2 – 2ab cos C.

30. LAW OF SINES. 

31. The area A = ab sin C.

GRAPHS OF TRIGONOMETRIC FUNCTIONS

The four functions sketched above, sin, cos, csc, and sec, all have period 2U.

1
2

a
A

b
B

c
Csin sin sin

.= =

π α
2

+





π α
2

+





π α
2

–





π α
2

–





1
2

1
2

α α
2

1
2

= ± + cos
;

1
2

1
2

α α
2

1
2

= ± – cos
;

2
1 2

tan
– tan

.
α

α
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670 AP Calculus

The two functions tan and cot
have period U.

INVERSE TRIGONOMETRIC FUNCTIONS

y = sin–1 x = arc sin x implies x = sin y, where – ! y ! .

y = cos–1 x = arc cos x implies x = cos y, where 0 ! y ! U.

y = tan–1 x = arc tan x implies x = tan y, where – < y < .

ANALYTIC GEOMETRY

RECTANGULAR COORDINATES

DISTANCE

32. The distance d between two points, P1(x1, y1) and P2(x2, y2), is given by

EQUATIONS OF THE STRAIGHT LINE

33. POINT-SLOPE FORM. Through P1(x1, y1) and with slope m:

y – y1 = m(x – x1).

34. SLOPE-INTERCEPT FORM. With slope m and y-intercept b:

y = mx + b.

35. TWO-POINT FORM. Through P1(x1, y1) and P2(x2, y2):

36. INTERCEPT FORM. With x- and y-intercepts of a and b, respectively:

x
a

y
b

+ = 1.

y y
y y
x x

x x–
–
–

( – ).1
2 1

2 1
1=

d x x y y= +( – ) ( – ) .2 1
2

2 1
2

π
2

π
2

π
2

π
2
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Appendix: Formulas and Theorems for Reference 671

37. GENERAL FORM. Ax + By + C = 0, where A and B are not both zero. If B | 0, the 

slope is the y-intercept, the x-intercept, 

DISTANCE FROM POINT TO LINE

38. Distance d between a point P(x1, y1) and the line Ax + By + C = 0 is

EQUATIONS OF THE CONICS

CIRCLE

39. With center at (0, 0) and radius r: x2 + y2 = r 2.
40. With center at (h, k) and radius r: (x – h)2 + (y – k)2 = r 2.

PARABOLA

41. With vertex at (0, 0) and focus at (p, 0): y2 = 4px.
42. With vertex at (0, 0) and focus at (0, p): x2 = 4py.

With vertex at (h, k) and axis
43. parallel to x-axis, focus at (h + p, k): (y – k)2 = 4p(x – h).
44. parallel to y-axis, focus at (h, k + p): (x – h)2 = 4p(y – k).

ELLIPSE

With major axis of length 2a, minor axis of length 2b, and distance between foci of 2c:
45. Center at (0, 0), foci at (±c, 0), and vertices at (±a, 0):

46. Center at (0, 0), foci at (0, ±c), and vertices at (0, ±a):

47. Center at (h, k), major axis horizontal, and vertices at (h ± a, k):

48. Center at (h, k), major axis vertical, and vertices at (h, k ± a):

For the ellipse, a2 = b2 + c2, and the eccentricity e = , which is less than 1.
c
a

( – ) ( – )
.

y k
a

x h
b

2

2

2

2 1+ =

( – ) ( – )
.

x h
a

y k
b

2

2

2

2 1+ =

y
a

x
b

2

2

2

2 1+ = .

x
a

y
b

2

2

2

2 1+ = .

d
Ax By C

A B
= + +

+
1 1

2 2
.

– .
C
A

– ;
C
B

– ;
A
B
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672 AP Calculus

HYPERBOLA

With real (transverse) axis of length 2a, imaginary (conjugate) axis of length 2b,
and distance between foci of 2c:

49. Center at (0, 0), foci at (±c, 0), and vertices at (±a, 0):

50. Center at (0, 0), foci at (0, ±c), and vertices at (0, ±a):

51. Center at (h, k), real axis horizontal, vertices at (h ± a, k):

52. Center at (h, k), real axis vertical, vertices at (h, k ± a):

For the hyperbola, c2 = a2 + b2, and eccentricity e = , which is greater than 1.

POLAR COORDINATES

RELATIONS WITH RECTANGULAR COORDINATES

53. x = r cos θ;
y = r sin θ;
r2 = x2 + y2;

tan θ = 

SOME POLAR EQUATIONS

54. r = a circle, center at pole, radius a.
55. r = 2a cos θ circle, center at (a, 0), radius a.
56. r = 2a sin θ circle, center at (0, a), radius a.
57. r = a sec θ line, x = a.

or r cos θ = a}
58. r = b csc θ line, y = b.

or r sin θ = b}

y
x

.

c
a

( – )
–

( – )
.

y k
a

x h
b

2

2

2

2 1=

( – )
–

( – )
.

x h
a

y k
b

2

2

2

2 1=

y
a

x
b

2

2

2

2 1– .=

x
a

y
b

2

2

2

2 1– .=
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Appendix: Formulas and Theorems for Reference 673

roses (four leaves)

59. r = cos 2θ. 60. r = sin 2θ.

cardioids (specific examples below)

61. r = a (1 ± cos θ). 62. r = a (1 ± sin θ).

r = 4 (1 – cos θ) r = 3 (1 + sin θ)

63. r2 = cos 2θ, lemniscate, symmetric to the x-axis.

(r2 = sin 2θ is a lemniscate symmetric to y = x.)
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674 AP Calculus

64. r = θ, (double) spiral of Archimedes

For θ > 0, the curve consists
only of the solid spiral.

65. rθ = a (θ > 0), hyperbolic (or reciprocal) spiral

This curve is for rθ = 2.
Note that y = 2 is an asymptote.

EXPONENTIAL AND LOGARITHMIC FUNCTIONS
PROPERTIES

ex ln x (x > 0)

e0 = 1; ln 1 = 0;

e1 = e; ln e = 1;

ex1 · ex2 = ex1+x2; ln (x1 · x2) = ln x1 + ln x2;

= ex1–x2; ln = ln x1 – ln x2;

e–x = ln xr = r ln x (r real).
1
ex .

x
x

1

2

e
e

x

x

1

2
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INVERSE PROPERTIES

f(x) = ex and f –1 (x) = ln x are inverses of each other:

f –1( f(x)) = f( f –1(x)) = x;

ln ex = eln x = x (x > 0).

GRAPHS
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Absolute convergence, 417
Absolute maximum/minimum, 163–166,

169
Absolute-value functions, 70
Acceleration, 179–181
Acceleration vector, 182
Algebra, 667
Alternating series, 416, 418
Amplitude, 74
Analytic geometry, 670–674
Antiderivatives, 215–216, 227–228
Approximation

of change in functions, 187
of definite integral sums, 257–262
of functions, 427–431
of the limit of alternating series, 418
linear or best linear, 185–187
tangent-line, 185

Arc length, 305–307
Area

between curves, 293
calculating, 291–293 
and definite integral as limit of sum,

255–256
ln x interpreted as, 269 
region bounded by parametric curves,

295
of solids of revolution, 300–305
of solids with known cross sections,

298–299
using symmetry, 293–295

Asymptotes, 92, 93, 170
Average rates of change, 111, 160
Average value, 270–276
Average velocity, 160

Best linear approximation, 185–187
Binomial theorem, 667

Calculator use, 4–9
Chain rule, 114–118
Change. see rates of change
Coefficients, 73

Collision points, 124
Comparison tests, 313–316, 413–414
Complex numbers, 437
Components, vertical and horizontal, 181
Composition (composite) function, 68,

114–118
Concavity, 163
Conditional convergence, 417
Constant of integration, 215
Continuity, 118–119, 162
Continuous functions, 98, 101
Continuous functions theorem, 101
Convergence

absolute, 417
conditional, 417
of improper integrals, 308–316
of infinite series, 410–412
of nonnegative series, 412–416
radial and interval of, in power series,

419–421
Convergent sequences, 407–408
Convergent series, 409
Critical points (critical values), 159
Cubic, 73
Curves

area between, 293
logistic, 387
motion along, 181–184
motion along plane, 347–350
parametrically defined, 161, 295
points on, 163–166
polar, area calculations of regions

bounded by, 296–298
sketching, 164–166
slope of, 111–112, 159
slope of polar, 190–191
solution, 369–373
tangent to, 111, 161

Decay, exponential, 379–383
Definite integrals

approximations of, 257–260
definition of, 249

Index
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as definition of sum, 255–256
distance applications of, 345–350
involving parametrically defined func-

tions, 254
as ln x, 269
properties of, 249–253
rate of change of, 352–355

Derivatives
of a composite function, 114–118
continuous, 162
definition of, 111
with discontinuities, 163
formulas for, 113
graphically estimating, 122
graphically relating of, 176–178
graphing a function from, 262–267
and implicit differentiation, 124–126
of implicitly defined functions,

372–373
indeterminate forms of, 129
of inverse of a function, 126–127
and L’Hôpital’s Rule, 129–132
maximum, minimum, and inflection

points with, 163–168
not existing everywhere, 168
numerically estimating, 119–121
of parametrically defined functions,

123–124
rates of change, 368
recognizing limits as, 132
slope of curves with, 159
tangents and normals with, 161–162

Difference quotient, 111
Differentiability, 118–119
Differentiable, 111
Differentiable functions, 164–166, 169
Differential equations

as applications of antiderivatives,
227–228

definition of, 227, 367–368
Euler’s method, 373–377
for exponential growth and decay,

379–383
first-order, 377–379
logistic, 386
for logistic growth, 386–390
for restricted growth, 383–386
for slope fields, 369–377
solutions of, 368

Differentiation. see derivatives
Discontinuities, 98–100, 170
Disks, 300–301
Displacement, 346

Distance, 345–346. see also motion
Divergence, 308–316, 410–411
Divergent sequences, 407, 408–409
Domains, 67–68

E, limit definition of, 97
Equations

differential (see differential equations)
parametric, 77–79, 190–191, 347–350
of tangents, 161

Error bound, 418, 431
Euler’s formula, 437
Euler’s method, 373–377
Even functions, 68
Exponential functions, 76, 674–675
Exponential growth and decay, 379–383
Extreme value theorem, 101

First-order differential equations,
377–379

Formulas
for algebra, 667
for antiderivatives, 215–223
for derivatives, 113
for geometry, 668
Parts Formula, 224–225
for trigonometry, 668–669

FTC (Fundamental Theorem of Calculus),
249, 255–256, 262, 352–355

Functions
absolute-value, 70
antiderivative of, 215
approximating changes in, 187
average value of, 270–276
continuous, 97–98, 162
with continuous derivatives, 118–119
decreasing and increasing, 162–163
defined by power series, 421–423
definition, 67
differentiable, 164–166, 169
domain of, 67
even, 68
exponential, 76
finding power series for, 423–426
generating no series, 426
greatest-integer, 70
implicitly defined, 372–373
indefinite integral of, 215
infinite, 90–91
inverse of, 69
inverse trigonometric, 75
limit of, 87
linear, 73

678 AP Calculus
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logarithmic, 76
not everywhere differentiable, 170
odd, 68
one-to-one, 69
optimization of, 172–175
parametrically defined, 77–79,

123–124, 254
polynomial, 73
quadratic, 73
range of, 67
rational, 73, 98
solutions of, 368
squeezing, 94
symmetry of, 68
trigonometric, 73–75
vector, 181
zeros of, 70

Fundamental Theorem of Calculus (FTC),
249, 255–256, 262, 352–355

General solution, 368
General terms, 408
Geometric series, 409
Geometric series tests, 411–412
Geometry, analytic, 670–674
Geometry, theories and formulas of,

667–668
Global maximum/minimum, 163–166,

169
Greatest-integer functions, 70, 87
Growth

exponential, 379–383
logistic, 386–390
restricted, 383–386
unrestricted vs. restricted, 387

Half-life, 380
Harmonic series, 409
Horizontal asymptotes, 92
Horizontal components, 181

Implicit differentiation, 124–126, 172
Implicitly defined functions, 372–373
Improper integrals

classes of, 307–308
comparison tests of, 313–316, 412
as limits, 308–313

Indefinite functions, 90
Indefinite integrals, 215–216, 227–228
Indeterminate forms, 129
Infinite discontinuities, 98, 310
Infinite functions, 90–91
Infinite series, 408

Inflection points, 164–166, 176
Inhibited growth, 387
Initial condition, 227
Initial-value problem, 227
Inputs, 67
Instantaneous rates of change, 111, 160
Integrals, 215–216, 227–228, 307–316.

see also definite integrals
Integral tests, 412
Integrands, 215, 249
Integration

constant of, 215
distance applications of, 345–355
lower and upper limits of, 249
by partial fractions, 223–224
by parts, 224–225
by tic-tac-toe method, 226–227

Intercepts, 170
Intermediate value theorem, 101
Intersection points, 124
Interval of convergence, 419–421
Inverse functions, 69, 126–128
Inverse trigonometric functions, 75

Jump discontinuities, 98

Lagrange error bound, 431
Left sums, 257
L’Hôpital’s Rule, 129–132
Limit comparison tests, 414
Limit definition of e, 97
Limits

of the function, 87
improper integrals as, 308–313
of indeterminate forms of, 129–130
left-hand, 87
one-sided, 87–89
of quotients of polynomials, 95–96
recognizing as derivative, 132
right-hand, 87
theorems on, 93–95
trigonometric, 96–97

Linear approximation, 185–187
Linear functions, 73
Lines, and motion, 179–181, 345–347
Local linearization, 185–187
Local maximum/minimum, 163–166, 176
Logarithmic functions, 76, 674–675
Logarithmic response, 368
Logarithms, 77
Logistic curves, 387
Logistic differential equations, 386
Logistic growth, 386–390

Index 679
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Maclaurin polynomials, 427, 431
Maclaurin series, 424, 426, 432–433
Magnitude, 181–182
Maxima, 172–175
Mean Value Theorem for Integrals, 250
Mean Value Theorem (MVT), 128–129, 215
Midpoint sums, 257
Minima, 172–175
Motion

along a curve, 181–184
along a line, 179–181
along a plane curve, 347–350
along a straight line, 345–347
and differential equations, 227–228

Natural logarithms, 77, 268
Net accumulation, 352
Net change, 346, 352–355
Nonnegative series, 412–416
Normals, 161
Nth root tests, 416
Nth term tests, 411
Numbers, complex, 437

Odd function, 68
One-to-one functions, 69
Optimization, 172–175
Outputs, 67

Parameters, 77
Parametrically defined curves, 161, 295
Parametrically defined functions, 77–79,

123–124, 254
Parametric differentiation, 123
Parametric equations

definition of, 77–79
for motion along a plane curve, 347–350
and polar curve slopes, 190–191

Partial fractions, 223–224
Particular solutions, 368
Parts Formula, 224–225
Periodicity, 74
Plane curves, 347–350
Points

collision, 124
critical (critical values), 159
of discontinuity, 170
of inflection, 164–166, 176
intersection, 124

Polar curves, 190–191, 296–298
Polynomial functions, 73
Polynomials

continuity of, 98

end behavior of, 92
limit of a quotient of, 95–96
Maclaurin, 427
Taylor, 427–431

Power rule, 113
Power series

computations with, 434–437
definition of, 419
finding, for function, 423–425
functions defined by, 421–423
Maclaurin Series, 424, 426
over complex numbers, 437
radius and interval of convergence, 419
Taylor Series, 424

Product rule, 113
P-series, 408
P-series tests, 413
Pythagorean theorem, 667

Quadratic formulas, 667
Quadratic functions, 73
Quotient rule, 113

Radius of convergence, 419–421
Ranges, 67
Rates of change

average, 111, 160
differential equations for, 368
of exponential growth and decay, 379–383
instantaneous, 111, 160
of logistic growth, 386–390
as net change, 346, 352–355
of restricted growth, 383–386

Rational functions, 70, 98
Rational function theorem, 96, 170
Ratio tests, 415
Reimann Sums, 255, 257, 350
Related rates, 188–189
Relative maximum/minimum, 163–166, 176
Remainders, 431
Remainder theorem, 667
Removable discontinuities, 98
Restricted growth, 383–386, 387
Right sums, 257
Rolle’s theorem, 128, 129

Sandwich Theorem, 94
Second Derivative Test, 164
Sequences, 407
Series

alternating, 416, 418
functions generating no, 426
geometric, 409

680 AP Calculus
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harmonic, 409
infinite, 408
nonnegative, 412–416
power (see power series)

Shells, 303–305
Sketching, 164–166, 170
Slope fields, 369–377
Slope of a curve, 111–112, 159
Solids, 298–305
Solution curves, 369–373
Solutions, 368
Speed, 179–181
Squeeze Theorem, 94
Straight lines, motion along, 345–347
Sums, 255, 257–262, 350
Symmetric difference quotient, 121
Symmetry

and area calculations, 293–295
and curve sketching, 170
of functions, 68

Tangent-line approximation, 185–186, 197
Tangents, 111, 161
Taylor polynomials, 427–431, 431
Taylor series, 424
Taylor’s Theorem, 431
Terms, 408
Theorems

about definite integrals, 249–253
binomial, 667
on continuous functions, 101
of convergence or divergence of 

infinite series, 410–411

Fundamental Theorem of Calculus
(FTC), 249, 255, 263, 352–355

on limits, 93–95
Mean Value Theorem for Integrals, 250
Mean Value Theorem (MVT), 128–129,

215
rational function, 96
remainder, 667
Rolle’s Theorem, 128, 129
Sandwich (Squeeze), 94
Taylor’s Theorem, 431

Tic-tac-toe method of integration,
226–227

Time, and related rates, 188–189
Trapezoid Rule, 259
Trigonometric functions, 73–75
Trigonometric limits, 96
Trigonometry basics, 668–670

Uninhibited (unrestricted) growth, 387

Variables, separating, 377–379
Vector, 181
Velocity, 179–181
Vertical asymptotes, 93
Vertical components, 181
Volume calculations, 298–305

Washers, 301–303
Work, 352

Zeros of functions, 70
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